ELECTROCHEMISTRY

Assertion and Reason Type

In the following questions a statement of assertion followed by a statement of reason is given. Choose the correct answer out of the following choices.

- (i) Assertion and reason both are correct statements and reason is correct explanation for assertion.
- (ii) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (iii) Assertion is correct statement but reason is wrong statement.
- (iv) Assertion and reason both are incorrect statements.
- (v) Assertion is wrong statement but reason is correct statement.
 - 1. **Assertion**: Cu is less reactive than hydrogen.

Reason: $E^{\circ}Cu^{+2}/Cu$ V is negative.

2. Assertion: E°Cell should have a positive value for the cell to function.

Reason: Ecathode < Eanode

3. Assertion: Conductivity of all electrolytes decreases on dilution.

Reason: On dilution number of ions per unit volume decreases.

4. Assertion : Λ_m for weak electrolytes shows a sharp increase when the electrolytic solution is diluted.

Reason: For weak electrolytes degree of dissociation increases with dilution of solution.

5. Assertion: Mercury cell does not give steady potential.

Reason: In the cell reaction, ions are not involved in solution

6. Assertion: Electrolysis of NaCl solution gives chlorine at anode instead of O₂. Reason: Formation of oxygen at anode requires overvoltage.

7. Assertion: For measuring resistance of an ionic solution an AC source is used.

Reason: Concentration of ionic solution will change if DC source is used.

8. Assertion : Current stops flowing when $E_{Cell} = 0$.

Reason: Equilibrium of the cell reaction is attained.

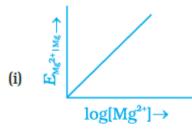
9. Assertion: E Ag⁺/Ag increases with increase in concentration of Ag+ ions.

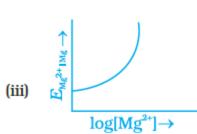
Reason: E Ag⁺/Ag has a positive value.

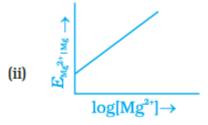
10. Assertion: Copper sulphate can be stored in zinc vessel.

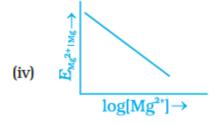
Reason: Zinc is less reactive than copper

Multiple Choice Questions


- 1. Which cell will measure standard electrode potential of copper electrode?
 - (i) $Pt(s)/H_2(0.1bar)/H^+(1M)//Cu^{+2}(1M)/Cu$
 - (ii) $Pt(s)/H_2(1bar)/H^+(1M)//Cu^{+2}(2M)/Cu$
 - (iii) $Pt(s)/H_2(1bar)/H^+(1M)//Cu^{+2}(1M)/Cu$
 - (iv) Pt(s)/H₂(1bar)/H⁺(0.1M)//Cu⁺²(1M)/Cu
- 2. Which of the following statement is correct?
 - (i) E_{Cell} and ΔrG of cell reaction both are extensive properties.
 - (ii) E_{Cell} and ΔrG of cell reaction both are intensive properties.
 - (iii) E_{Cell} is an intensive property while ΔrG of cell reaction is an extensive property.
 - (iv) E_{Cell} is an extensive property while ΔrG of cell reaction is an intensive property.
- 3. Which of the statements about solutions of electrolytes is not correct?
 - (i) Conductivity of solution depends upon size of ions.
 - (ii) Conductivity depends upon viscosity of solution.
 - (iii) Conductivity does not depend upon solvation of ions present in solution.
 - (iv) Conductivity of solution increases with temperature.
- 4. The cell constant of a conductivity cell ______.
 - (i) Changes with change of electrolyte.
 - (ii) Changes with change of concentration of electrolyte.
 - (iii) Changes with temperature of electrolyte.
 - (iv) Remains constant for a cell.


5. Which of the following statement is not correct about an inert electrode in a cell?		_
	(i)	It does not participate in the cell reaction.
	(ii)	It provides surface either for oxidation or for reduction reaction.
	(iii)	It provides surface for conduction of electrons.
	(iv)	It provides surface for redox reaction.
6.	The difference between the electrode potentials of two electrodes when no current is drawn through the cell is called	
	(i)	Cell potential
	(ii)	Cell EMF
	(iii)	Potential difference
	(iv)	Cell voltage
7.	While charging the lead storage battery	
	(i) Pb	SO ₄ anode is reduced to Pb.
	(ii) Pl	oSO ₄ cathode is reduced to Pb.
	(iii) PbSO ₄ cathode is oxidised to Pb.	
	(iv) PbSO ₄ anode is oxidised to PbO ₂ .	
8.	$\Lambda^{\circ}_{m(NH4OH)}$ is equal to	
	(i)	$\Lambda^{\circ}_{m(NH4OH)} + \Lambda^{\circ}_{m(NH4Cl)} - \Lambda^{\circ}_{m(HCl)}$
	(ii)	$\Lambda^{\circ}_{m(NH4Cl)} + \Lambda^{\circ}_{m(NaOH)} - \Lambda^{\circ}_{m(NaCl)}$
	(iii)	$\Lambda^{\circ}_{m(NH4Cl)} + \Lambda^{\circ}_{m(NaCl)} - \Lambda^{\circ}_{m(NaOH)}$
	(iv)	$\Lambda^{\circ}_{m(NaOH)} + \Lambda^{\circ}_{m(NaCl)}$ - $\Lambda^{\circ}_{m(NH4Cl)}$
9.	In the electrolysis of aqueous sodium chloride solution which of the half cell reaction will occur at anode?	
	(i)	$Na^{+}(aq) + e^{-}$ \rightarrow $Na(s);$ $E_{cell} = -2.71V$
	(ii)	$O_2(g) + 4H^+(aq) + 4e^-; E_{cell} = 1.23V$
	(iii	i) $H^{+}(aq) + e^{-} \longrightarrow \frac{1}{2} H_2$ $E_{cell} = 0.00V$


(iv)
$$Cl^{-}(aq) + e^{-}$$
 $\frac{1}{2}Cl_{2}$ $E_{cell} = 1.36V$


10. Electrode potential for Mg electrode varies according to the equation

 $E_{\rm Mg^{2^+}|\,Mg} = E_{\rm Mg^{2^+}|\,Mg}^{\ominus} - \frac{0.059}{2} \quad \log \frac{1}{[{\rm Mg^{2^+}}]} \,. \ \, {\rm The \ graph \ of} \ \, E_{\rm Mg^{2^+}|\,Mg} \ \, {\rm vs} \, \log [{\rm Mg^{2^+}}] \, {\rm is} \,$

