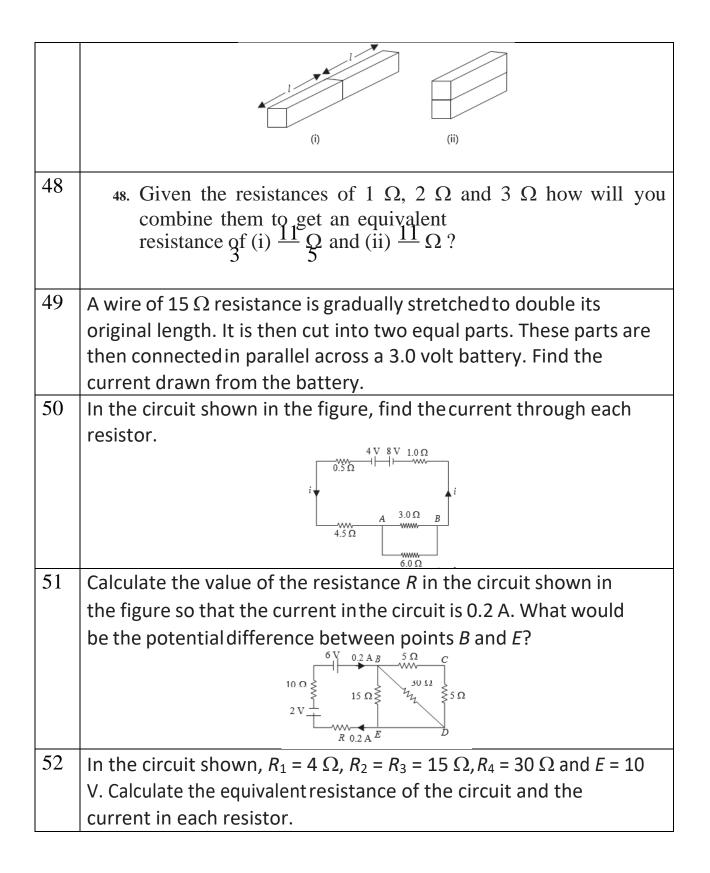
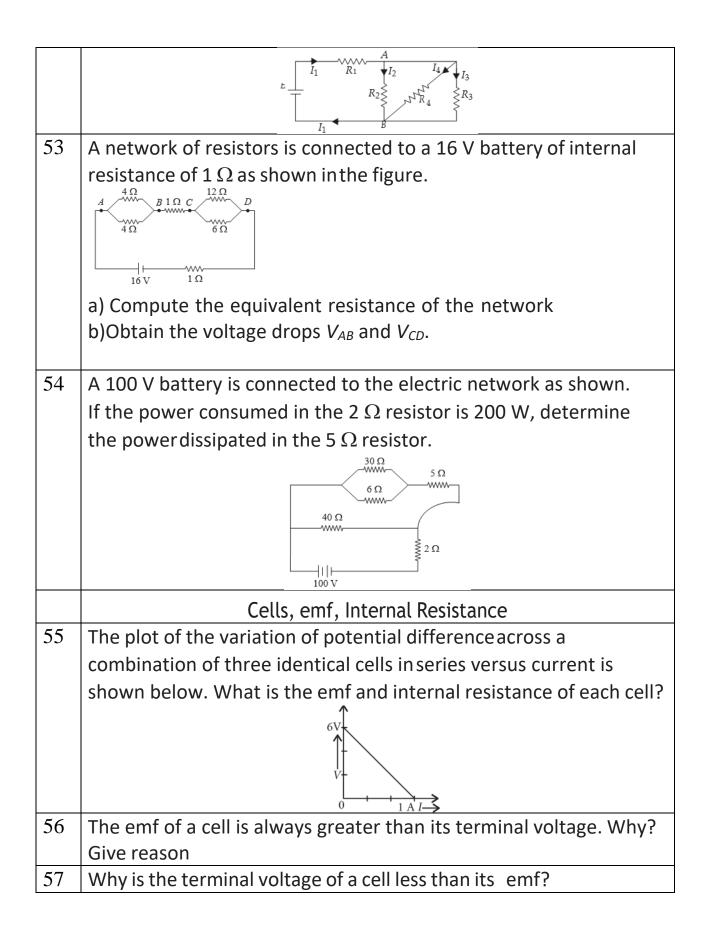

DAV PUBLIC SCHOOL THERMAL COLONY, PANIPAT Class 12 Physics Assignment Chapter 3- CURRENT ELECTRICITY

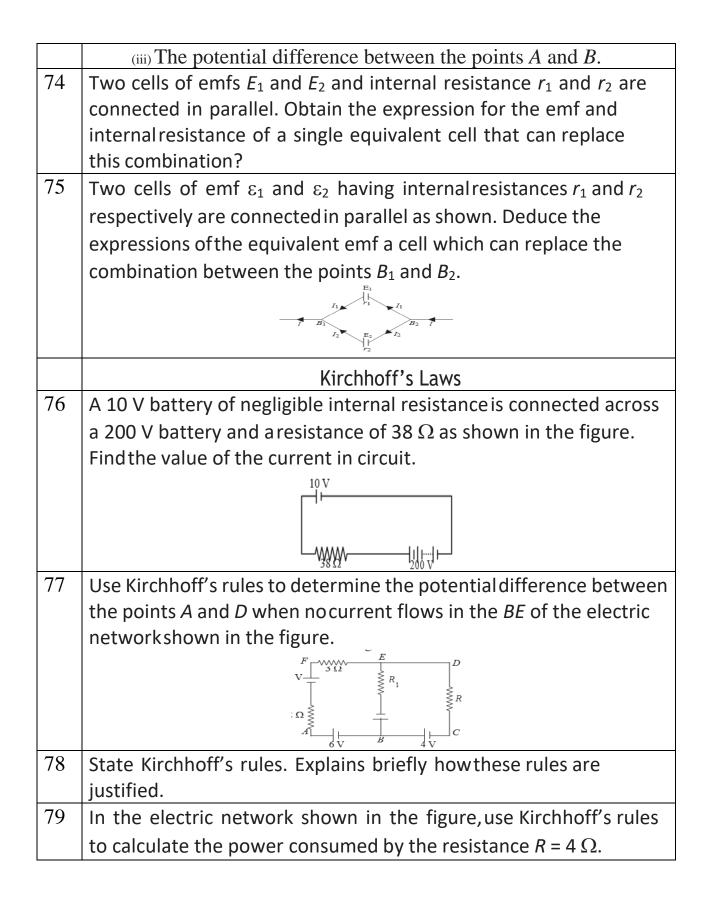

6	Write the expression for the drift velocity of charge carriers in a
	conductor of length 'l' across which a potential difference 'V' is
	applied.
7	When electrons drift in a metal from lower to higher potential,
	does it mean that all the free electrons of the metal are
	moving in the same direction?
8	Two conducting wires X and Y of same diameter but different
	materials are joined in series across a battery. If the number
	density of electrons in X is twice that in Y, find the ratio of drift
	velocity of electrons in the two wires.
9	Using the concept of drift velocity of charge carriers in a
	conductor, deduce the relationship between current density and
	resistivity of the conductor.
10	Estimate the average drift speed of conduction electrons in a
	copper wire of cross-sectional area 1.0×10^{-7} m ² carrying a current
	of 1.5 A. Assume the density of conduction electrons to be 9×10^{28}
11	m^{-3} .
11	Explain the term 'drift velocity' of electrons in a conductor. Hence
	obtain the expression for the current through a conductor in terms of 'drift velocity'.
12	Write a relation between current and drift velocity of electrons
12	in a conductor. Use this relation to explain how the resistance of
	a conductor changes with the rise in temperature.
13	Define mobility of a charge carrier. Write the relation
	expressing mobility in terms of relaxation time. Give its SI unit.
14	A conductor of length 'l' is connected to adc source of potential
	'V'. If the length of the conductor is tripled by gradually stretching
	it keeping 'V' constant, how will (i) drift speed of electrons and (ii)
	resistance of the conductor beaffected. Justify your answer.
15	Define drift velocity. Write its relationship with relaxation time in
	terms of the electric field <i>E</i> applied to a conductor.
	A potential difference V is applied to a conductor of length l. How

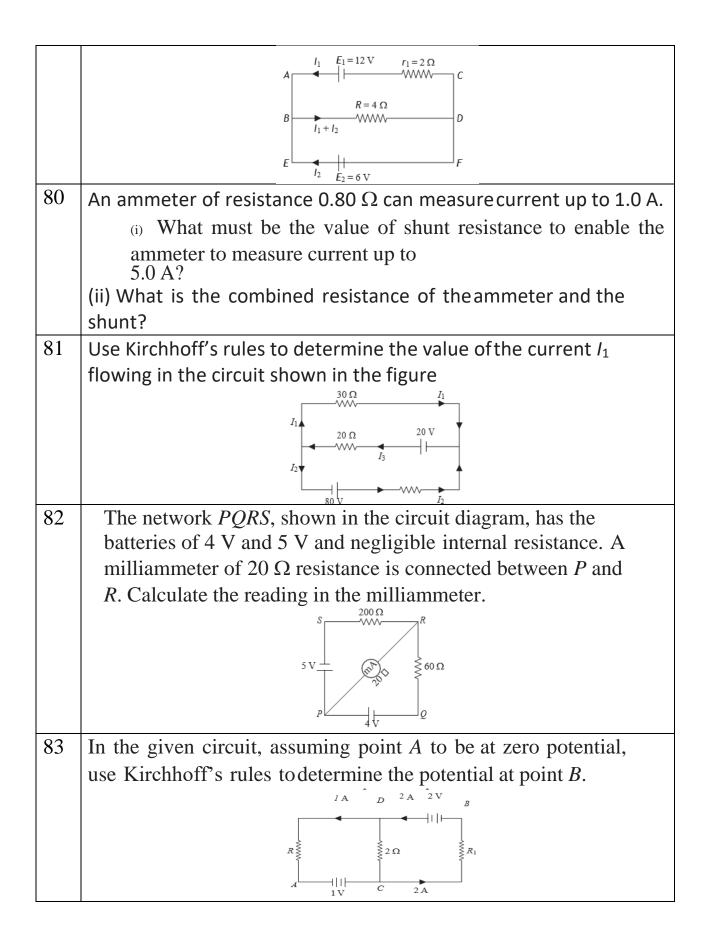

 is the drift velocity affected when V is doubled and I is halved? Derive an expression for drift velocity of free electrons in a conductor in terms of relaxation time. Two metallic wires of the same material have the same length but cross-sectional area is in the ratio 1 : 2. They are connected (i) in series and (ii) in parallel. Compare the drift velocities of electrons in the two wires in both the cases and (ii). Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. A steady current flow in a metallic conductor fon-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? Deduce the relation between current flowing through a conductor and drift velocity <i>Vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 		
 conductor in terms of relaxation time. 17 Two metallic wires of the same material have the same length but cross-sectional area is in the ratio 1 : 2. They are connected (i) in series and (ii) in parallel. Compare the drift velocities of electrons in the two wires in both the cases and (ii). 18 Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. 19 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		is the drift velocity affected when V is doubled and l is halved?
 17 Two metallic wires of the same material have the same length but cross-sectional area is in the ratio 1 : 2. They are connected (i) in series and (ii) in parallel. Compare the drift velocities of electrons in the two wires in both the cases and (ii). 18 Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. 19 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>Vd</i> of the electrons. 21 Deduce the relation between the electrons. 22 Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 	16	Derive an expression for drift velocity of free electrons in a
cross-sectional area is in the ratio 1 : 2. They are connected (i) in series and (ii) in parallel. Compare the drift velocities of electrons in the two wires in both the cases and (ii). 18 Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. 19 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i> . If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform cross- section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current ' <i>I</i> ' flowing through the cross-section of a wire versus the time ' <i>t</i> '. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the		conductor in terms of relaxation time.
 series and (ii) in parallel. Compare the drift velocities of electrons in the two wires in both the cases and (ii). 18 Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. 19 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 	17	Two metallic wires of the same material have the same length but
 in the two wires in both the cases and (ii). 18 Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. 19 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		cross-sectional area is in the ratio 1 : 2. They are connected (i) in
 18 Derive an expression for the resistivity of a good conductor, in terms of the relaxation time of electrons. 19 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>Vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		series and (ii) in parallel. Compare the drift velocities of electrons
 terms of the relaxation time of electrons. (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time 't'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		in the two wires in both the cases and (ii).
 (a) Find the relation between drift velocity and relaxation time of charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 	18	Derive an expression for the resistivity of a good conductor, in
 charge carriers in a conductor. (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		terms of the relaxation time of electrons.
 (b) A conductor of length <i>L</i> is connected to a d.c. source of e.m.f. <i>V</i>. If the length of the conductor is tripled by stretching it, keeping <i>V</i> constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform crosssection. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 	19	(a) Find the relation between drift velocity and relaxation time of
 e.m.f. V. If the length of the conductor is tripled by stretching it, keeping V constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor:current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity vd of the electrons. Figure shows a plot of current 'I' flowing through the cross-section of a wire versus the time 't'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		charge carriers in a conductor.
 keeping V constant. Explain how drift velocity would be affected. 20 A steady current flow in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		(b) A conductor of length <i>L</i> is connected to a d.c. source of
 A steady current flow in a metallic conductor of non-uniform cross-section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time 't'. Use the plot to find the charge flowing in 10 sec through the wire. Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		e.m.f. V. If the length of the conductor is tripled by stretching it,
section. Which of these quantities is constant along the conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity v_d of the electrons. Figure shows a plot of current 'I' flowing through the cross-section of a wire versus the time 't'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the		
 conductor: current, current density, electric field, drift speed? 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. <i>I</i>(A) <i>I</i>(S) 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 	20	
 21 Deduce the relation between current flowing through a conductor and drift velocity <i>vd</i> of the electrons. Figure shows a plot of current '<i>I</i>' flowing through the cross-section of a wire versus the time '<i>t</i>'. Use the plot to find the charge flowing in 10 sec through the wire. 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		
conductor and drift velocity v_d of the electrons. Figure shows a plot of current ' <i>I</i> ' flowing through the cross-section of a wire versus the time ' <i>t</i> '. Use the plot to find the charge flowing in 10 sec through the wire. $I_{(A)}$ I_{0} I_{0} $I_{(S)}$ 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the		· · · · · · · · · · · · · · · · · · ·
Figure shows a plot of current ' <i>I</i> ' flowing through the cross-section of a wire versus the time ' <i>t</i> '. Use the plot to find the charge flowing in 10 sec through the wire. $I(A) = \int_{0}^{I(A)} \int_{0}^{10} \int_{0}^{10} f(s)$ 22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the	21	
$\frac{1}{22}$ Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the		
in 10 sec through the wire. $10 = \frac{1}{10}$ in 10 sec through the wire. $10 = \frac{1}{10}$ in 10 sec through the wire. $10 = \frac{1}{10}$ is a second s		
$\frac{1}{22}$ Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the		
 ¹⁰/₅/₅/₁₀/₁₀/₁₀/₁₀/₁₀ ²² Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		
 ⁵/₁₀ t(s) ²² Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		
22 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the		10
 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		5
 Define relaxation time of the free electrons drifting in a conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the 		
conductor. How is it related to the drift velocity of free electrons? Use this relation to deduce the expression for the	22	
electrons? Use this relation to deduce the expression for the		
electrical resistivity of the material .		
		electrical resistivity of the material .

 A conductor of length <i>L</i> is connected to a dc source of emf ɛ. If this conductor is replaced by another conductor of same material and same area of cross-section but of length 3<i>L</i>, how will the drift velocity change? Define the term 'drift velocity' of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time. (a) Derive the relation between current density '<i>j</i>' and potential difference '<i>V</i>' across a current carrying conductor of length '<i>I</i>', area of cross- section '<i>A</i>' and the number density '<i>n</i>' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] Caraph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. Resistivity of Various Materials Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? Carbon and silicon both have fourvalence electrons each. How then are they distinguished? 		
 material and same area of cross-section but of length 3<i>L</i>, how will the drift velocity change? 24 Define the term 'drift velocity' of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time. 25 (a.) Derive the relation between current density' j' and potential difference 'V' across a current carrying conductor of length '<i>I</i>', area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii) and where Ohm's law is obeyed. 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 	23	A conductor of length <i>L</i> is connected to a dc source of emf ε . If
 will the drift velocity change? 24 Define the term 'drift velocity' of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time. 25 (a,) Derive the relation between current density' j' and potential difference 'V' across a current carrying conductor of length 'I', area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii) and where Ohm's law is obeyed. 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 		this conductor is replaced by another conductor of same
 24 Define the term 'drift velocity' of charge carriers in a conductor. Obtain the expression for the current density in terms of relaxation time. 25 (a) Derive the relation between current density' j' and potential difference 'V' across a current carrying conductor of length 'I', area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 		material and same area of cross-section but of length 3L, how
 Obtain the expression for the current density in terms of relaxation time. 25 (a) Derive the relation between current density' j' and potential difference 'V' across a current carrying conductor of length 'I', area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each.		will the drift velocity change?
25 (a.) Derive the relation between current density' j' and potential difference 'V' across a current carrying conductor of length 'I', area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10 ⁻⁷ m ² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10 ²⁸ m ⁻³ .] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. 27 <u>Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. </u>	24	Define the term 'drift velocity' of charge carriers in a conductor.
 25 (a,) Derive the relation between current density' j' and potential difference 'V' across a current carrying conductor of length 'I', area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 		Obtain the expression for the current density in terms of
(a) between the relation between current density f and potential difference 'V' across a current carrying conductor of length 'I', area of cross- section 'A' and the number density 'n' of free electrons.(b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0×10^{-7} m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9×10^{28} m ⁻³ .]26Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii) and where Ohm's law is obeyed.27Resistivity of Various Materials 2727Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker?28Carbon and silicon both have fourvalence electrons each.		relaxation time.
 area of cross- section 'A' and the number density 'n' of free electrons. (b) Estimate the average drift speed of conduction electrons in a copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 	25	(a_) Derive the relation between current density' <i>j</i> ' and potential
 copper wire of cross- sectional area 1.0 × 10⁻⁷ m² carrying a current of 1.5 A. [Assume that the number density of conduction electrons is 9 × 10²⁸ m⁻³.] Limitations of Ohm's Law Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. Resistivity of Various Materials Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? Carbon and silicon both have fourvalence electrons each. 		area of cross- section 'A' and the number density 'n' of free
Current of 1.5 A. [Assume that the number density of conduction electrons is $9 \times 10^{28} \mathrm{m}^{-3}$.]26Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii) and where Ohm's law is obeyed.27Resistivity of Various Materials Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker?28Carbon and silicon both have fourvalence electrons each.		(b) Estimate the average drift speed of conduction electrons in a
electrons is 9 × 10 ²⁸ m ⁻³ .] Limitations of Ohm's Law 26 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. <i>i</i> b <i>c c b c c c b c c c c c c c c c c</i>		
 Limitations of Ohm's Law Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii)and where Ohm's law is obeyed. Image: Contract of Contract		•
 ²⁶ Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii) and where Ohm's law is obeyed. Image: Comparison of Various Materials 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 		electrons is $9 \times 10^{28} \text{ m}^{-3}$.]
 Graph showing the variation of current versus voltage for a material GaAs is shown in the figure. Identify the region of i) negative resistance ii) and where Ohm's law is obeyed. Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each.		Limitations of Ohm's Law
 region of i) negative resistance ii) and where Ohm's law is obeyed. Image: Tripped Contract Provided Pr	26	Graph showing the variation of current versus voltage
 law is obeyed. Iaw is obeyed.<th></th><td>for a material GaAs is shown in the figure. Identify the</td>		for a material GaAs is shown in the figure. Identify the
 Resistivity of Various Materials Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? Carbon and silicon both have four valence electrons each. 		region of i) negative resistance ii) and where Ohm's
Algorithm Resistivity of Various Materials 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each.		law is obeyed.
 27 Two wires of equal length, one of copper and the other of manganin have the same resistance. Which wire is thicker? 28 Carbon and silicon both have fourvalence electrons each. 		$\begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $
manganin have the same resistance. Which wire is thicker?28Carbon and silicon both have fourvalence electrons each.		Resistivity of Various Materials
28 Carbon and silicon both have fourvalence electrons each.	27	·
		manganin have the same resistance. Which wire is thicker?
How then are they distinguished?	28	Carbon and silicon both have fourvalence electrons each.
		How then are they distinguished?

20	
29	Define resistivity of a conductor. Write its S.I. unit.
30	(a) You are required to select a carbon resistor of resistance 47 k Ω ±
	10% from a large collection. What should be the sequence of
	colour bands used to code it ?
	(b) Write the characteristics of manganin which make it suitable
	for making standard resistance.
31	Define ionic mobility. Write its relationship with relaxation time.
	How does one understand the temperature dependence of
	resistivity of a semiconductor?
32	The sequence of coloured bands in two carbon resistors R_1 and R_2
	is brown groop blue
	 (i) brown, green, blue (ii) orange, black, green
	Find the ratio of their resistances.
33	A voltage of 30 V is applied across a carbon resistor with first,
55	second and third rings of blue, black and yellow colours
	respectively. Calculate the value of current, in mA, through the
	resistor.
34	A cylindrical metallic wire is stretched to increase its length by
	5%. Calculate the percentage change in its resistance
35	<i>I-V</i> graph for a metallic wire at two different temperatures, T_1 and
	T_2 is as shown in the figure. Which of the two temperatures is
	lowerand why?
	٠ •
	I_{\blacktriangle}
	T_2
0.5	
36	Plot a graph showing the variation of resistivity of a conductor with
07	temperature.
37	Show variation of resistivity of copper as a function of
	temperature in a granh
38	temperature in a graph. Plot a graph showing variation of current versus voltage for the

	material GaAs.
39	How does one explain increase in resistivity of a metal with
	increase of temperature?
40	Plot a graph showing the variation of resistance of a conducting
	wire as a function of its radius. Keeping the length of the wire and
	its temperature as constant
41	Two materials Si and Cu, are cooled from 300 K to 60 K. What will
	be the effect on their resistivity?
42	Show on a graph, the variation of resistivity with temperature
	for a typical semiconductor.
43	Draw a graph showing variation of resistivity with temperature
	for nichrome. Which property of nichrome is used to make
	standard resistance coils ?
44	Plot a graph showing temperature dependence of resistivity for a
	typical semiconductor. How is this behaviour explained?
45	Write the mathematical relation for the resistivity of a material in
	terms of relaxation time, number density and mass and charge
	of charge carriers in it. Explain, using this relation, why the
	resistivity of a metal increases and that of a semiconductor
	decreases with rise in temperature
	Combination of Resistors-Series and Parallel
46	A wire of resistance 8 <i>R</i> is bent in the form of a circle. What is the
	effective resistance between the ends of a diameter AB?
17	Two identical slobes of a given metal are isinged to getter in true
47	Two identical slabs, of a given metal, are joined together, in two different ways, as shown in figures (i) and (ii). What is the ratio of
	different ways, as shown in figures (i) and (ii). What is the ratio of the resistances of these two combinations?





58	Three cells of emf ε , 2ε and 5ε having internal resistances r , $2r$ and $3r$ respectively are connected across a variable resistance R as shown in the figure. Find the expression for the current. Plot a
	graph for variation of current with <i>R</i> .
59	A cell of emf 'E' and internal resistance 'r' is connected across a
0,	variable resistor 'R'. Plot a graph showing variation of terminal
	voltage 'V' of the cell versus the current 'I'. Using the plot, show
	how the emf of the cell and its internal resistance can be
	determined.
60	(a) Distinguish between emf (ε) and terminal voltage (V) of a cell
	having internal resistance 'r'.
	(b) Draw a plot showing the variation of terminal voltage (V) vs
	the current (I) drawn from the cell. Using this plot, how does one
	determine the internal resistance of the cell ?
61	A battery of emf <i>E</i> and internal resistance <i>r</i> when connected
	across an external resistance of 12 Ω , produces a current of
	0.5 A. When connected across a resistance of 25 Ω , it produces
	a current of 0.25 A. Determine (i) the emf and (ii) the internal
	resistance of the cell.
62	A cell of emf <i>E</i> and internal resistance <i>r</i> is connected to two
	external resistances R_1 and R_2 and a perfect ammeter. The
	current in the circuit is measured in four different situations :
	(i) without any external resistance in the circuit
	(ii) with resistance R_1 only
	(iii) with R_1 and R_2 in series combination
	(iv) with R_1 and R_2 in parallel combination The currents
	measured in the four cases are

	-
	0.42 A, 1.05 A, 1.4 A and 4.2 A, but not necessarily in that order. Identify the currents corresponding to the four cases mentioned
	above
63	A battery of emf 10 V and internal resistance 3 Ω is connected
	to a resistor. If the current in the circuit is 0.5 A, find
	(i) The resistance of the resistor;
	(ii) The terminal voltage of the battery
64	A straight line plot showing the terminal potential difference
	(V) of a cell as a function of current (I) drawn from it is shown in
	the figure. Using this plot, determine
	(i) the emf and
	(ii) internal resistance $\begin{bmatrix} 0 & 1 \\ 2.0 \\ 1.6 \end{bmatrix}$
	1.4
(5	$\longrightarrow \text{Current I (ampere)}$
65	A cell of emf 'E' and internal resistance 'r' is connected across a
	variable resistor 'R'. Plota graph showing the variation of terminal potential (V' with resistance R
	potential 'V' with resistance R. Product from the graph the condition under which 'V' becomes
	Predict from the graph the condition under which 'V' becomes
66	equal to 'E'.
66	V-I graphs for parallel and series combination of two metallic
	resistors are shown below. Which graph represents parallel
	combination?
67	A call of a set (5) and intermed was interested as a set of a set
67	A cell of emf 'E' and internal resistance 'r' is connected across a
	variable load resistor <i>R</i> . Draw the plots of the terminal voltage <i>V</i>
	versus <i>R</i> and (ii) the current <i>I</i> .
	It is found that when $R = 4 \Omega$, the current is 1 A and when R
	is increased to 0.0, the surrent reduces to 0.5.4. Find the values of
	is increased to 9 Ω , the current reduces to 0.5 A. Find the values of

68	Write any two factors on which internal resistance of a cell depends. The reading on a high resistance voltmeter, when a cell is connected across it, is 2.2 V. When the terminals of the cell are also connected to a resistance of 5 Ω as shown in the circuit, the voltmeter reading drops to 1.8 V. Find the internal resistance of the cell.
69	A cell, with a finite internal resistance r , is connected across two external resistances R_1 and R_2 ($R_1 > R_2$), one by one. In which case would the terminal potential difference of the cell be more ?
	Cells in Series and in Parallel
70	Two identical cells, each of emf <i>E</i> , having negligible internal resistance, are connected in parallel with each other across an external resistance <i>R</i> . What is the current through this resistance?
71	Two cells, of emf 2ε and ε , and internal resistance $2r$ and r respectively, are connected in parallel. Obtain the expression for the equivalent emf and the internal resistance of the combination.
72	Two cells of emfs 1.5 V and 2.0 V having internal resistances 0.2 Ω and 0.3 Ω respectively are connected in parallel. Calculate the emf and internal resistance of the equivalent cell.
73	Two cells of emf E_1 , E_2 and internal resistance r_1 and r_2 respectively are connected in parallel as shown in the figure
	Deduct the expression for
	(i) The equivalent emf of the combination
	(ii) The equivalent resistance of the combination

84	Using Kirchhoff's rules in the given circuit, determine (i) the voltage drop across the unknown resistor <i>R</i> and (ii) the current <i>I</i> in the arm <i>EF</i> . 1A $\frac{3V}{2\Omega}$
	$E \xrightarrow{I} \xrightarrow{S \vee 3\Omega} F$
85	Using Kirchhoff's rules determine the value of unknown resistance
	R in the circuit so that no current flows through 4Ω resistance.
	Also find the potential difference between <i>A</i> and <i>D</i> .
	$E = \frac{1 \Omega}{2} E D$
	$\begin{cases} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ R \end{cases}$
	I T G V
0.5	
86	(a) State Kirchhoff's rules.(b) Use these rules to write the
	expressions for the currents I_1 ,
	I_2 and I_3 in the circuit diagram
	shown.
	$I_1 \qquad E_1 = 2 V r_1 = 4 \Omega$
	$E_2 = 1 \text{ V} r_2 = 3 \Omega$
0.7	$ \begin{array}{c c} E_3 = 4 \ V & r_3 = 2 \ \Omega \\ \hline \hline $
87	(a) State Kirchhoff's rules.
	(b) A battery of 10 V and negligible internal resistance is
	connected across the diagonally opposite corners of a cubical
	network consisting of 12 resistors each of 1 Ω resistance. Use
	Kirchhoff's rules to determine (i) the equivalent resistance of the network, and (ii) the total current in the network.
88	(a) State Kirchhoff's rules of current distribution in an electrical

	network.
	(b) Using these rules determine the value of the current I_1 in the
	electric circuit given below
	↓ I1 40 Ω 40 V
	80 V 20 Ω
89	The given figure shows a network of resistances R1, R2, R3 and
	R4. Using Kirchhoff's laws, establish the balance condition for the
	network
	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$
90	Use Kirchhoff's rules to obtain conditions for the balance
	condition in a Wheatstone bridge.