DAV PUBLIC SCHOOL THERMAL COLONY, PANIPAT Class 12 Physics Assignment Chapter 2 – EIECTROSTATIC POTENTIAL AND CAPACITANCE

1	A 500 μ C charge is at the centre of a square of side 10 cm. Find the work done in moving a charge of 10 μ C between two diagonally opposite points
	on the square.
2	What is the electrostatic potential due to an electric dipole at an equatorial point?
3	What is the work done in moving a test charge g through a distance of 1
5	cm along the equatorial axis of an electric dipole?
4	Define the term 'potential energy' of charge 'q' at a distance V in an
	external electric field.
5	A point charge Q is placed at point O as shown in the figure. Is the
	potential difference $V_A - V_B$ positive, negative or zero, if Q is (i) positive
	(ii) negative?
	Q •
	O A B
6	A hollow metal sphere of radius 5 cm is charged such that the potential on
	its surface is 10 V. What is the potential at the centre of the sphere?
7	A hollow metal sphere of radius 10 cm is charged such that the potential
	on its surface is 5 V. What is the potential at the centre of the sphere?
8	Why is electrostatic potential constant throughout the volume of the
	conductor and has the same value (as inside) on its surface?
9	Why must the electrostatic potential inside a hollow charged conductor be
	the same at every point?
10	What is the geometrical shape of equipotential surfaces due to a single
	isolated charge?
11	Two charges 2μ C and – 2μ C are placed at points A and B 5 cm apart.
	Depict an equipotential surface of the system.
12	What is the amount of work done in moving a point charge around a
	circular arc of radius r at the centre of which another point charge is
	located?
13	Two charges 4μ C and -4μ C are placed at points A and B 3 cm apart.
	Depict an equipotential surface of the system
14	"For any charge configuration, equipotential surface through a point is
	normal to the electric field." Justify.

15	Two equal balls having equal positive charge 'q' coulombs are suspended
	by two insulating strings of equal length. What would be the effect on the
16	Torce when a plastic sheet is inserted between the two.
10	The given graph shows variation of charge q versus potential difference
	v for two capacitors C_1 and C_2 . Both the capacitors have same plate separation but plate area of C_2 is greater than that of C_4 . Which line (A or
	B) corresponds to C_1 and why?
	V
17	A charge 'q' is moved from a point A above a dipole of dipole movement
	p' to a point B below the dipole in equatorial plane without acceleration.
	Find the work done in the process.
	B
18	Derive the expression for the electric potential at any point along the axial
10	line of an electric dipole be a point on the axis of the dipole at a distance r
	from its centre O.
19	Derive an expression for the potential energy of an electric dipole of
	dipole movement \vec{p} in the electric field \vec{E} .
20	Two point charges, $q_1 = 10 \times 10^{-8}$ C, $q_2 = -2 \times 10^{-8}$ C are separated by a
	distance of 60 cm in air.
	(i) Find at what distance from the 1 st charge, q ₁ would the electric potential
	be zero.
01	(ii) Also calculate the electrostatic potential energy of the system.
21	I wo point charges 4Q, Q are separated by Im in air. At what point on the
	Also colculate the electrostatic potential energy of the system of charges
	Also calculate the electrostatic potential energy of the system of charges, 10^{-7} C
22	Two-point charges 20 x 10^{-6} C and -1 X 10^{-6} C are separated by a
$\angle \angle$	I WU-PUILL CHAIGES ZUX IV C ALL -4 A IV C ALE SEPARALEU DY A

	distance of 50 cm in air.
	(i) Find the point on the line joining the charges, where the electric
	potential is zero.
	(ii) Also find the electrostatic potential energy of the system.
23	Calculate the work done to dissociate the system of three charges placed
	on the vertices of a triangle as shown.
	q
	10 cm 10 cm
	-4 q 10 cm $+2 q$
24	(i) Can two equipotential surfaces intersect each other? Give reasons.
	(ii) Two charges $-q$ and $+q$ are located at points A (0, 0, $-a$) and B (0, 0,
	+a) respectively. How much work is done in moving a test charge from
	point P (7, 0, 0) to Q (-3,0,0)?
25	Draw 3 equipotential surfaces corresponding to a field that uniformly
	increases in magnitude but remains constant along Z -direction. How are
	these surfaces different from that of a constant electric field along Z-
26	direction.
20	Two uniformity large parallel time plates having charge defisities \pm 0 and $-$
	surface due to electric field between the plates. If a particle of mass m
	and charge d' remains stationary between the plates, what is the
	magnitude and direction of this field?
27	Two small identical electrical dipoles AB and CD, each of dipole moment
	'p' are kept at an angle of 120° as shown in the figure. What X' is the
	resultant dipole moment of this combination? If this system is subjected to
	electric field (E) directed along + X direction, what will be the magnitude
	and direction of the torque acting on this?
	Y
	$D^{+q}A$
	$x' \xrightarrow{120^{\circ}} x$
	$-q + B + q^{\circ}C$
	\checkmark
L	

28	Figure shows two identical capacitors C_1 and C_2 , each of 2 μ F
	capacitance, connected to a battery of 5 V. Initially switch 'S' is left open
	and dielectric slabs of dielectric constant $K = 5$ are inserted to fill
	completely the space between the plates of the two capacitors. How will
	the charge and
	, S
	$5V = \frac{1}{2}\mu F$ $\frac{1}{2}\mu F$
	(ii) potential difference between the plates of the capacitors be affected
	after the slabs are inserted?
29	Net capacitance of three identical capacitors in series is 1 pF. What will
	be their net capacitance if connected in parallel?
	Find the ratio of energy stored in the two configurations if they are both
	connected to the same source.
30	Draw a plot showing the variation of
	(i) electric field (E) and
01	(III) with distance r due to a point charge Q
31	A test charge 'q' is moved without acceleration from A to C along the path
	Trom A to B and then from B to C in electric field E as shown in the figure.
	(2, 3) B E
	(2, 0) $(6, 0)$
	(i) Calculate the potential difference between A and C.
	(ii) At which point (of the two) is the electric potential more and why?.
32	An electric dipole is held in a uniform electric field.
	(i) Show that the net force acting on it is zero.
	(ii) The dipole is aligned parallel to the field.
	Find the work done in rotating it through the angle of 180
33	Determine the potential difference across the plates of the capacitor C_1
	of the network shown in the figure.

	Calculate the potential energy of the dipole, if it has a charge of ± 4 nC.
38	An electric dipole of length 1 cm, which placed with its axis making an
	angle of 60° with uniform electric field, experiences a torque of $6\sqrt{3}$ Nm.
	Calculate the potential energy of the dipole, if it has a charge of ± 2 nC.
39	A parallel plate capacitor of capacitance C is charged to a potential V. It is
	then connected to another uncharged capacitor having the same
	capacitance. Find out the ratio of the energy stored in the combined
	system to that stored initially in the single capacitor.
40	Two point charges q_1 and q_2 are located at r_1 and r_2 respectively in an
	external electric field E .Obtain the expression for the total work done in
	assembling this configuration.
41	I wo point charges q and -2q are kept 'd' distance apart. Find the location
	of the point relative to charge 'q' at which potential due to this system of
10	Charges Is zero.
42	Two closely spaced equipotential surfaces A and B with potentials V and $V + \delta V$ (where δV is the change in V), are kept δI distance chart as
	shown in the figure
	$V+\delta V$
	V
	A Deduce the relation between the electric field and the notantial gradient
	between them. Write the two important conclusions concerning the
	relation between the electric field and electric potentials
43	Why does current in a steady state not flow in a capacitor connected
-5	across a battery? However momentary current does flow during charging
	or discharging of the capacitor. Explain.
44	Three identical capacitors $C_1 C_2$ and C_3 of capacitance 6 µF each are
	connected to a 12 V battery as shown.
	Find
	(i) charge on each capacitor
	(ii) equivalent capacitance of the network
	(iii) energy stored in the network of capacitors. (Delhi 2009)

	$ \begin{array}{c} C_1 \\ \vdots \\ \vdots \\ \vdots \\ C_2 \end{array} C_3 $
45	The equivalent capacitance of the combination between A and B in the given figure is 4 uE
	A 20µF C B
	(i) Calculate capacitance of the capacitor C.
	(II) Calculate charge on each capacitor II a 12 v battery is connected across terminals A and B
	(iii) What will be the potential drop across each capacitor?
46	Two parallel plate X and Y capacitors, X and Y, have the same area of
	plates and same separation between them. X has air between the plates
	while Y contains a dielectric medium of $\varepsilon_r = 4$.
	(i) Calculate capacitance of each capacitor if equivalent capacitance of
	the combination is 4 μ F. (ii) Calculate the potential difference between the plates of X and X
	(ii) What is the ratio of electrostatic energy stored in X and Y
47	A parallel plate capacitor is charged by a battery. After some time the
	battery is disconnected and a dielectric slab of dielectric constant K is
	inserted between the plates. How would
	(i) the capacitance,
	(ii) the electric field between the plates and
48	(iii) the energy stored in the capacitor, be an ected? Justify your answer. (a) A charge $\pm O$ is placed on a large spherical conducting shell of radius
70	R. Another small conducting sphere of radius r carrying charge 'g' is
	introduced inside the large shell and is placed at its centre. Find the
	potential difference between two points, one lying on the sphere and the
	other on the shell.
	(b) How would the charge between the two flow if they are connected by a
40	conducting wire? Name the device which works on this fact.
49	A parallel plate capacitor is charged by a ballery. After sometime the hattery is disconnected and a dielectric slab with its thickness equal to the
	plate separation is inserted between the plates. How will

	(i) the capacitance of the capacitor,
	(ii) electric field between the plates and
	(iii) the energy stored in the capacitor be affected? Justify your answer in
50	each case.
50	(a) Depict the equipotential surfaces for a system of two identical positive
	(b) Deduce the expression for the netential energy of a system of two
	(b) Deduce the expression for the potential energy of a system of two
	point charges q ₁ and q ₂ brought from minning to the
51	A parallel plate espectively in the presence of external electric field E.
51	A parallel plate capacitor, each with plate area A. and separation 0, is charged to a potential difference V. The battery used to charge it remains
	connected A dielectric slab of thickness d and dielectric constant k is now
	placed between the plates. What change, if any will take place in t
	(i) charge on plates?
	(ii) electric field intensity between the plates?
	(iii) capacitance of the capacitor?
	Justify your answer in each case
52	A parallel plate capacitor is charged to a potential difference V by a d c
52	source. The capacitor is then disconnected from the source. If the
	distance between the plates is doubled, state with reason how the
	following will change:
	(i) electric field between the plates.
	(ii) capacitance, and
	(iii) energy stored in the capacitor.
53	A network of four capacitors each of 12µF capacitance is connected to a
	500 V supply as shown in the figure.Determine
	(a) equivalent capacitance of the network and
	(b) charge on each capacitor.
	C ₂
	$C_1 \perp \qquad \perp C_3$
	C ₄
	500 V
54	A network of four capacitors each of 15 µF capacitance is connected cf to
	a 500 V supply as shown in the figure. Determine
	(a) equivalent capacitance of the network and

	(b) charge on each capacitor.
	C ₂
55	Deduce the expression for the electrostatic energy stored in a capacitor of
	capacitance 'C' and having charge 'Q'.
	How will the
	(i) energy stored and
	(ii) the electric field inside the capacitor be affected when it is completely
	filled with a dielectric material of dielectric constant 'K'? .
56	A capacitor of unknown capacitance is connected across a battery of V
	volts. The charge stored in it is 360 μ C. When potential across the
	capacitor is reduced by 120 V, the charge stored in it becomes 120 μ C.
	Calculate:
	(i) The potential V and the unknown capacitance C.
	(ii) What will be the charge stored in the
	capacitor, if the voltage applied had increased by 120 V?
57	A slab of material of dielectric constant K has the same area as that of the
	plates of a parallel plate capacitor but has the thickness d/2, where d is
	the separation between the plates. Find out the expression for its
50	capacitance when the slab is inserted between the plates of the capacitor.
28	Calculate the amount of work done to dissociate a system of three
	charges 1 μ C, 1 μ C and -4 μ C placed on the ventices of an equilateral
50	A connected across a battery of V
39	x capacitor of unknown capacitance is connected across a battery of v
	capacitor is reduced by 100 V, the charge stored in it becomes 100 V
	Calculate the potential V and the unknown canacitance. What will be the
	charge stored in the capacitor if the voltage applied had increased by 100
60	Draw the equipotential surfaces due to an electric dipole. Locate the
00	points where the potential due to the dipole is zero
61	Two thin concentric shells of radii r_1 and r_2 ($r_2 > r_1$) have charges q_1 and
	g ₂ . Write the expression for the potential at the surface of inner and outer
	shells.
62	(a) Obtain the expression for the energy stored per unit volume in a
	charged parallel plate capacitor.
i	

	(b) The electric field inside a parallel plate capacitor is E. Find the amount
	of work done in moving a charge q over a closed rectangular loop a b c d
	a.
63	Derive the expression for the capacitance of a parallel plate capacitor
05	having plate area A and plate separation d.
64	Two parallel plate capacitors of capacitances C_1 and C_2 such that $C_1 =$
	3C ₂ are connected across a battery of V volts as shown in the figure.
	Initially the key (k) is kept dosed to fully charge the capacitors. The key is
	now thrown open and a dielectric slab of dielectric constant 'K' is inserted
	in the two capacitors to completely fill the gap between the plates,
	$v \doteq + c_1 + c_2$
	Find the ratio of
	(i) the net capacitance and
	(II) the energies stored in the combination, before and alter the
65	Two parallel plate capacitors of capacitances Cr and Ca such that Cr -
05	$2C_2$ are connected across a battery of V yolts as shown in the figure
	Initially the key (k) is kept closed to fully charge the capacitors. The key is
	now thrown open and a dielectric slab of dielectric constant 'K' is inserted
	in the two capacitors to completely fill the gap between the plates.
	k
	$\mathbf{v} \stackrel{\perp}{=} 1_{\mathbf{o}} 1_{\mathbf{o}}$
	\overline{T} T_{0_1} T_{0_2}
	Find the ratio of
	(i) the net capacitance and
	(ii) the energies stored in the combination, before and after the

	the combination is 4 pF. (ii) Calculate the potential difference between the plates of X and Y
	(iii) Estimate the ratio of electrostatic energy stored in X and Y.
70	Define an equipotential surface. Draw equipotential surfaces : (i) in the case of a single point charge and (ii) in a constant electtic field in Z-direction. Why the equipotential
	(iii) Can electric field exist tangential to an equipotential surface? Give reason. (All India 2015)
71	A parallel plate capacitor, of capacitance 20pF, is conneted to a 100 V supply. After sometime the battery is disconnected, and the space, between the plates of the capacitor is filled with a dielectric, of dielectric constant 5. Calculate the energy stored in the capacitor (i) before (ii) after the dielectric has been put in between its plates.
72	(i) Find equivalent capacitance between A and B in the combination given below. Each capacitor is of 2 μF capacitance
	$A \longrightarrow H_{P} \longrightarrow B$
	(ii) If a dc source of 7 V is connected across AB, how much charge is drawn from the source and what is the energy stored in the network?
73	A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor? If another capacitor of 6 pF is connected in series with it with the same battery connected across the combination, find the charge stored and potential difference across each capacitor.
74	(i) Derive the expression for the electric potential due to an electric dipole

∕^ is
/^ IS
,
а
`
,
1
tery
tree
red
ctric
pt in
/ of
-
h ح
ale
n
V
nes

	80 pC. Calculate V and the unknown capacitance. What would have been the charge in the capacitor if the voltage were increased by 80 V?
80	A capacitor of unknown capacitance is connected across a battery of V volt. A charge of 120 μ C is stored in it. When the potential across the capacitor is reduced by 40 V, the charge stored in the capacitor becomes 40 μ C. Calculate V and the unknown capacitance. What would have been the charge in the capacitor if the voltage were increased by 40 V?
81	A parallel plate capacitor of capacitance C is charged to a potential V by a battery. Without disconnecting the battery, the distance between the plates is tripled and a dielectric medium of $k = 10$ is introduced between the plates is tripled and a dielectric medium of $k = 10$ is introduced between the plates of the capacitor. Explain giving reasons, how will the following be affected: (i) capacitance of the capacitor (ii) charge on the capacitor, and (iii) energy density of the capacitor.
82	Derive the expression for the electric potential at any point P, at distance r from the centre of an electric dipole, making angle a, with its axes.
83	Derive an expression for the energy stored in a parallel plate capacitor. On charging a parallel plate capacitor to a potential V, the spacing between the plates is halved, and a dieletric medium of $\varepsilon_r = 10$ is introduced between the plates, without disconnecting the d.c. source. Explain, using suitable expressions, how the (i) capacitance, (ii) electric field and (iii) energy density of the capacitor change.
84	 (a) Obtain the expression for the potential due to an electric dipole of dipole moment p at a point V on the axial line. (b) Two identical capacitors of plate dimensions I x b and plate separation d have di-electric slabs filled in between the space of the plates as shown in the figure.

85	$ \begin{array}{c} \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & $
	 (b) A thin metallic spherical shell of radius R carries a charge Q on its surface. A point charge Q2 is placed at its centre C and another charge +2Q is placed outside the shell at a distance x from the centre as shown in the figure.
	Find (i) the force on the charge at the centre of shell and at the point A, (ii) the electric flux through the shell.
86	Question 90. (i) If two similar large plates, each of area A having surface charge densities +a and -a are separated by a distance d in air, find the expressions for (a) field at points between the two plates and on outer side of the plates.
	 Specify the direction of the field in each case. (b) the potential difference between the plates. (c) the capacitance of the capacitor so formed. (ii) Two metallic spheres of radii R and 2R are charged so that both of these have same surface charge density a. If they are connected to each other with a conducting wire, in which direction will the charge flow and why?
87	(a) Obtain the expression for the potential due to a point charge.(b) Use the above expression to show that the potential, due to an electric

dipole (length 2a), varies as the 'inverse square' of the distance r of the 'field point' from the centre of the dipole for r > a.

88 (a) Define the SI unit of capacitance.

(b) Obtain the expression for the capacitance of a parallel plate capacitor.

(c) Derive the expression for the affective capacitance of a series combination of n capacitors.