

SET –B

M.M. : 30

General Instructions:-

- I. There are 15 questions in all. All questions are compulsory.
- II. This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
- III. Section A contains seven MCQ of one mark each, Section B contains four questions of two marks each, Section C contains two questions of three marks each, section D contains one question of 4 marks and section E contains one long questions of five marks.

Q.No.	Questions	Marks
	SECTION - A	
1	Differentiation of tan x will give	1
	a) $\tan^2 x$ b) sec x $\tan x$ c) $\sec^2 x$ d) none of these	
2	[MLT ⁻²] is the dimensional formula for	1
	a) Force b) Linear momentum c) Acceleration d) none of these	
3	What will be the value of log _a a?	1
	a) a b) 1 c) zero d) none of these	
4	The value of sin 150° is	1
	a) $3/2$ b) $1/2$ c) $1/\sqrt{2}$ d) $\sqrt{3}/2$	
5	What will be the dimensional formula for energy	1
	a) $[ML^2T^{-2}]$ b) $[MLT^{-2}]$ c) $[ML^2T^{-3}]$ d) none of these	
6	Assertion: Integration is inverse of Differentiation.	1
	Reason: Integration means calculating slopes.	
	(a) Both A and R are true and R is the correct explanation of A	
	(b) Both A and R are true but R is not the correct explanation of A	
	(c) A is true but R is false	
_	(d) A is false and R is also false	
7	Assertion: Dimensional formula for work and energy is same.	1
	Reason: Work done is equal to change in energy.	
	(a) Both A and K are true and K is the correct explanation of A (b) Dath A and B are true but B is not the correct explanation of A	
	(b) Both A and K are true but K is not the correct explanation of A	
	(d) A is false and B is also false	
	(d) A is faise and K is also faise	
8	Selve the equation for y:	2
0	Solve the equation for x. $4\mathbf{y}^2 - 4\mathbf{a}\mathbf{y} + (\mathbf{a}^2 - \mathbf{b}^2) = 0$	2
9	Expand the following using logarithms:	2
)	a) PV $\gamma = K$	2
	1 T	
	$\left(b\right) = \frac{1}{2l} \sqrt{u}$	
10	i) Expand these Trigonometric formulaes	2
	a) Cos (A+B)	
	b) Sin A + Sin B	
11	Find $\frac{dy}{dx}$ when $y = x^2 \log_e x$	2

	SECTION - C	
12	If the motion of the particle is represented by $S = 2t^3 + t^2 - 2t + 2$. Find the position,	3
	velocity and acceleration of the particle after 2 seconds.	
13	Find the value of 10 joule in a system when mass is 1 kg, length is 10 cm and time 5	3
	min.	
	Section – D	
14	a) Integrate the following functions with respect to x	
		2
	$x = \mathbf{R}$	
	GMm	
	(i) $\frac{1}{r^2} dx$	
	$x = \infty$	
		2
	ii)	2
	v .	
	$\mathbf{M} v dv$	
	u	
	b) Define one metre.	
	Section - E	
15	a) Assuming that mass m of the largest stone that can be moved by a flowing river	3
	depends on the velocity v, the density l and acceleration due to gravity g, show that m	
	varies with sixth power of the velocity of flow.	
	b) The value of acceleration due to gravity (g) at a height h above the surface of earth	
	is given by $g^{\parallel} = gR^2 / (R+h)^2$. If h< <r, <math="" prove="" that="" then="">g^{\parallel} = g(1 - \frac{2h}{R}).</r,>	2

SET -A

M.M.: 30

General Instructions:-

- I. There are 15 questions in all. All questions are compulsory.
- II. This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
- III. Section A contains seven MCQ of one mark each, Section B contains four questions of two marks each, Section C contains two questions of three marks each, section D contains one question of 4 marks and section E contains one long questions of five marks.

Q.No.	Questions	Marks
	SECTION - A	
1	The value of sin 330° is	1
	a) $-3/2$ b) $-1/2$ c) $1/\sqrt{2}$ d) $\sqrt{3}/2$	
2	What will be the dimensional formula for work	1
	a) $[ML^2T^{-2}]$ b) $[MLT^{-2}]$ c) $[ML^2T^{-3}]$ d) none of these	
3	Differentiation of sec x will give	1
	a) $\tan^2 x$ b) sec x $\tan x$ c) $\sec^2 x$ d) none of these	
4	[MLT ⁻¹] is the dimensional formula for	1
	a) Force b) Linear momentum c) Acceleration d) none of these	
5	What will be the value of log _a 1?	1
	a) a b) 1 c) zero d) none of these	
6	Assertion: Dimensional formula for work and energy is same.	1
	Reason: Work done is equal to change in energy.	
	(a) Both A and R are true and R is the correct explanation of A	
	(b) Both A and R are true but R is not the correct explanation of A	
	(c) A is true but R is false (1)	
7	(d) A is false and R is also false	1
/	Assertion: Integration is inverse of Differentiation.	1
	Reason: Integration means calculating slopes. (a) Poth A and P are true and P is the correct explanation of A	
	(a) Both A and R are true but R is not the correct explanation of A (b) Both A and R are true but R is not the correct explanation of A	
	(c) A is true but R is false	
	(d) A is false and R is also false	
	SECTION - B	
8	Solve the equation for x:	2
	$4x^2 - 4ax + (a^2 - b^2) = 0$	
9	Expand the following using logarithms :	2
	a) $PV^{\gamma} = K$	
	$1 \times T$ $2 \sqrt{I}$	
	b) $I = 2\pi \sqrt{\frac{1}{\alpha}}$	
10	i) Expand these Trigonometric formulaes	2
	a) Sin(A+B)	
	b) Cos A + Cos B	
11	Find $\frac{dy}{dx}$ when $y = x^2 \log_e x$	2
	SECTION - C	
12	If the motion of the particle is represented by $S = t^3 + t^2 - t + 2$. Find the position,	3

	velocity and acceleration of the particle after 2 seconds.	
13	Find the value of 10 joule in a system when mass is 1 kg, length is 10 cm and time 5	3
	min.	
	Section – D	
14	a) Integrate the following functions with respect to x	
	$x = R$ (i) $\int_{x = \infty} \frac{GMm}{x^2} dx$ (x = \infty)	2
	ii) $\int_{u}^{v} \mathbf{M} v dv$	1
	b) Define one Ampere.	1
	Section - E	
15	a) Given that the time period T of oscillation of a gas bubble from an explosion under water depends on P, d and E where P is the pressure, d is the density of water and E is the total energy of the explosion. Find dimensionally a relation for T.b) The value of acceleration due to gravity (g) at a height h above the surface of earth	3
	is given by $g^{\parallel} = gR^2 / (R+h)^2$. If h< <r, <math="" prove="" that="" then="">g^{\parallel} = g(1 - \frac{2h}{R}).</r,>	2

OSDAV Public School Kaithal Marking Scheme Physics - XI Set - A

1	В	1
2	A	1
3	В	1
4	В	1
5	C	1
6	A	1
7	C	1
8	$D = b^{2} - 4ac$ = 16a ² - 16 a ² + 16 b ² = 16b ² X= (a+b)/2 & (a-b)/2	1
9	a) $Log_e p + Log_e v^{v} = Log_e k$ $Log_e p + \gamma Log_e v = Log_e k$ b) $log_e T = log_e 2\pi + \frac{1}{2} log_e (I/\alpha)$ $log_e T = log_e 2 + log_e \pi + \frac{1}{2} (log_e I - log_e \alpha)$	0.5 0.5 0.5 0.5
10	a) Sin A Cos B + Cos A Sin B b) 2 Cos (A + B) /2 Cos (A-B)/2	1 1
11	$y = x^{2} \log_{e} x$ $dy/dx = x^{2}d(\log_{e} x)/dx + d(x^{2})/dx \log_{e} x$ $dy/dx = x^{2}(1/x) + 2x (\log_{e} x)$ $dy/dx = x + 2x (\log_{e} x)$ $dy/dx = x (1 + 2 \log_{e} x)$	0.5 0.5 0.5 0.5
12	$S = t^{3} + t^{2} - t + 2$ For t = 2 $S = 12 m$ $dS/dt = 3 t^{2} + 2t - 1$ For t = 2 V = 15m/s $dv/dt = 6t + 2$ for t = 2 $c = 14 m/c^{2}$	0.5 0.5 0.5 0.5 0.5
1		0.5

13	$ \begin{array}{l} n_2 = n_1 \left[\left(\begin{array}{c} M_1 / M_2 \right)^a \left(\begin{array}{c} L_1 / L_2 \right)^b \left(\begin{array}{c} T_1 / T_2 \right)^C \right] \\ n_2 = 10 \left[\left(\begin{array}{c} 1 Kg / 1 Kg \right)^1 \left(\begin{array}{c} 1m / 10 cm \right)^2 \left(\begin{array}{c} 1s / 5 \ min. \right)^{-2} \right] \\ n_2 = 10 \left[\left(\begin{array}{c} 1 Kg / 1 Kg \right)^1 \left(\begin{array}{c} 100 cm / 10 cm \right)^2 \left(\begin{array}{c} 1s / 300 s \right)^{-2} \right] \\ n_2 = 10 x \ 100 x \ 300 x \ 300 \\ n_2 = 9 x \ 10^7 \ new \ unit \end{array} \right] $	0.5 1 0.5 0.5 0.5
14	$\int_{\infty}^{k} \frac{G_{1} m m}{x^{2}} dx$	0.5
	$= GIMm \left[- \frac{1}{n} \right]_{\infty}$	0.5
	> [-GIMM]	0.5
	a) $\neq \begin{bmatrix} -Grmm \\ R \end{bmatrix}$.	0.5
	b) M = M = M = M = M = M = M = M = M = M =	0.5
	 Define ampere. One ampere is defined as that constant current when it is passed through each of infinitely long parallel straight conductors kept side by side parallelly at a distance of a part in vacuum causes each conductor to experience a force of 2 × 10⁻⁷ newton per me of conductor. 	1

15		Time period depends upon on pressure 'P'.	
		density 'd' and energy due to explosion 'E' as	
		follows;	
		t∝P ^a d ^b E ^c	
		Taking dimension of both side,	0.5
		$[T] = K[ML^{-1}T^{-2}]^{a}[ML^{-3}]^{b}[ML^{2}T^{-2}]^{c}$	0.5
		$[T] = K[M^{a}L^{-a}T^{-2a}][M^{b}L^{-3b}][M^{c}L^{2c}T^{-2c}]$	0.5
		$[T] = K [M^{a+b+c}L^{-a-3b+2c}T^{-2a-2c}]$	
		$a + b + c = 0 \implies -b = a + c(1),$	0.5
		-a + 2c = 3b(2),	0.5
		-2a - 2c = 1(3)	
		from eq(1) and eq(2), b = $\frac{3}{2}$ c	
		puuting value of 'b' in in eq(1) a = $\frac{-5c}{2}$	0.5
		and solve with eq(3) we get, $c = \frac{1}{3}$ and $a = \frac{-5}{6}$,	
		$b = \frac{1}{2}$	
		puuting these value in equation of time,	0.5
	a)	$t \propto P \vec{e} d^{\frac{1}{2}} E^{\frac{1}{3}}$	
	α)	$()^2$	
		$r(R)^{2} = r(1)^{-2}$	1
		$g(\frac{1}{R+h}) = g\left(\frac{1}{1+h}\right) = \frac{1}{(1+h)^2} = g(1+\frac{1}{R})$	1
		$\left(1+\frac{\pi}{R}\right)$ $\left(1+\frac{\pi}{R}\right)$	
		<i>r</i> e are given h << R, hence, h/R << 1	0.5
		can write $g' = g(1 - \frac{2h}{2})$	
	b)	R R	0.5

OSDAV Public School Kaithal Marking Scheme Physics - XI Set - B

1	С	1
2	A	1
3	В	1
4	В	1
5	A	1
6	С	1
7	A	1
8	$D = b^{2} - 4ac$ = 16a ² - 16 a ² + 16 b ² = 16b ² X= (a+b)/2 & (a-b)/2	1
9	a) $Log_e p + Log_e v^{\gamma} = Log_e k$ $Log_e p + \gamma Log_e v = Log_e k$ b) $log_e v = log_e(1/2l) + \frac{1}{2} log_e(T/u)$ $log_e v = -log_e 2 - log_e l + \frac{1}{2} (log_e T - log_e u)$	0.5 0.5 0.5 0.5
10	a) Cos A Cos B - SinA Sin B b) 2 Sin(A + B) /2 Cos(A-B)/2	1 1
11	$y = x^{2} \log_{e} x$ $dy/dx = x^{2}d(\log_{e} x)/dx + d(x^{2})/dx \log_{e} x$ $dy/dx = x^{2}(1/x) + 2x (\log_{e} x)$ $dy/dx = x + 2x (\log_{e} x)$ $dy/dx = x (1 + 2 \log_{e} x)$	0.5 0.5 0.5 0.5
12	$S = 2t^{3} + t^{2} - 2t + 2$ For t = 2 $S = 18 m$ $dS/dt = 6t^{2} + 2t - 2$ For t = 2 V = 26 m/s $dv/dt = 12t + 2$ for t = 2	0.5 0.5 0.5 0.5 0.5
	a = 26 m/s²	0.5

15
15

$$M = K V^{a} d^{b} g^{c}$$

 $M = K V^{a} d^{b} g^{c}$
 $M = K V^{c} d^{c}$
 $M = K$