

1	c	1
2	d	1
3	b	1
4	d	1
5	a	
		1
6	b	1
7	a	1
8.	d	1
9	The Higher the osmotic pressure, the more hypertonic, the solution there are more	1
	particles in 1M NaCl than in 1M glucose because of dissociation. Therefore, NaCl is	1
	more hypertonic. NaCl solution will show higher elevation of boiling point.	
10	Cathode Reaction: $O2 + 2H2O + 4e \rightarrow 4OH \rightarrow$	1
	Anode Reaction: $2H2 + 4OH \rightarrow 4H2O + 4e$	1
	Net Cell Reaction: $2H2 + O2 \rightarrow 2H2O$	1
11	Isotonic solutions are solutions having same osmotic pressure. 1.0 M glucose solution	1
	is isotonic with 1.0 M inductose solution as both solutions have same osmotic pressure.	1
	flow of solvent in either direction	1
10	Now of solvent in either direction. It is given that veneous pressure of water $= 22.8 \text{ mm of Hz}$	
12	it is given that vapour pressure of water, – 25.8 min of fig	
	Weight of water taken $w1 = 850 g$	
	weight of water taken, will 650 g	
	Weight of urea taken, $w^2 = 50 \text{ g}$	
	Molecular weight of water, $M1 = 18$ g mol -1	
	Molecular weight of urea, $M2 = 60 \text{ g mol}-1$	1/2
	Now, we have to calculate vapour pressure of water in the solution. We take vapour	
	pressure as p1.	
	Now, from Kaoult's law, we have:	

	$\frac{p_1^0 - p_1}{p_1^0} = \frac{n_2}{n_1 + n_2}$	1/2	
	$\Rightarrow \frac{p_1^0 - p_1}{p_1^0} = \frac{\frac{W_2}{M_2}}{\frac{W_1}{M_1} + \frac{W_2}{M_2}}$	1/2	
	$\Rightarrow \frac{23.8 - p_1}{23.8} = \frac{\frac{50}{60}}{\frac{850}{18} + \frac{50}{60}}$	1/2	
	$\Rightarrow \frac{23.8 - p_1}{23.8} = \frac{0.83}{47.22 + 0.83}$		
	$\Rightarrow \frac{23.8 - p_1}{23.8} = 0.0173$ $\Rightarrow p_1 = 23.4 \text{ mm of Hg}$		
	Hence, the vapour pressure of water in the given solution is 23.4 mm of Hg and its relative lowering is 0.0173.		
13	A Salt bridge is used to maintain electrical neutrality inside the circuit of a galvanic cell. A Salt bridge acts as an electrical connection between two half cells. A Salt bridge prevents the diffusion of solution from one cell to the other.	1+1	
14	Given: $w_{\rm B} = 12.48$ g, $w_{\rm A} = 1$ kg = 1000 g, $m_{\rm B}$ (BaCl ₂)		
	= 208.34 g/mol. $\Delta T_b = 373.0832 - 373 = 0.0832 \text{ K}$ $K_b = 0.52 \text{ K kg mol}^{-1}$		
	$\therefore \qquad \Delta T_b = i K_b m = i K_b \times \frac{w_B}{m_B} \times \frac{1000}{w_A(g)}$	1	
	$0.0832 = i \times 0.52 \times \frac{12.48}{208.34} \times \frac{1000}{1000}$		
	i = 2.67 BaCl ₂ \longrightarrow Ba ²⁺ $+ 2Cl^{-}_{2\alpha} \alpha =$ degree of dissociation		
	$i = \frac{1+2\alpha}{1} = 1+2\alpha$ or $1+2\alpha = 2.67$		
	$\alpha = \frac{1.67}{2} = 0.835$	1	

15	a) "At infinite dilution the molar conductivity of the electrolyte at infinite dilution is the sum of the ionic conductivities of cations and anions, this is called kohlrausch's law".		
	$\Box 0 = \lambda 0 + + \lambda 0$		
	b)		
	$\Lambda^{\circ}_{NaCl} = 126.4 \text{ S cm}^{2} \text{ mol}^{-1}$ $\Lambda^{\circ}_{HCl} = 425.9 \text{ S cm}^{2} \text{ mol}^{-1}$ $\Lambda^{\circ}_{CH_{3}COONa} = 91.0 \text{ S cm}^{2} \text{ mol}^{-1}$ $\Lambda^{\circ}_{CH_{3}COOH} = \Lambda^{\circ}_{CH_{3}COONa} + \Lambda^{\circ}_{HCl} - \Lambda^{\circ}_{NaCl}$ $= 91.0 + 425.9 - 126.4 = 390.5 \text{ S cm}^{2} \text{ mol}^{-1}$		
16	From the given cell representation,		
	Ag ⁺ /Ag couple act as cathode		
	Zn ²⁺ /Zn couple act as anode		
	$E_{cell}^{0} = E_{cathode}^{0} - E_{anode}^{0}$ $E_{cell}^{0} = 0.80 - (-0.76)$ $E_{cell}^{0} = 1.56 V$ The given cell reaction is, Zn(s) + 2Ag ⁺ (aq) - Zn ²⁺ (aq) + 2Ag n = 2 By Nernst equation, $E_{cell} = E_{cell}^{0} - \frac{0.059}{n} \log \frac{(Zn^{2+1})}{(Zn^{2+1})}$ $E_{cell} = E_{cell}^{0} + \frac{0.059}{n} \log \frac{(Ag^{+})^{2}}{(Zn^{2+1})}$ $E_{cell} = 1.56 + \frac{0.059}{2} \log \frac{(0.01)^{2}}{(0.1)^{2}}$ $E_{cell} = 1.56 + \frac{0.059}{2} \log (1 \times 10^{-3})$	1	
	$E_{cell} = 1.56 - \frac{0.039}{2} \times 3$ $E_{cell} = 1.56 - 0.088 = 1.472 \text{ V}$	1	
17	a)When solution is diluted, the total number of ions increases due to increase in the degree	1	
	of dissociation. Hence, molar conductance increases with dilution. But the number of ions per	1	
	unit volume decreases. Hence, specific conductance decreases with dilution.		
	b)Cathode - Reduction		
	Ag+ + e- 🖸 Ag		
	Anode - Oxidation		
18 a)	i) It would fill with water and burst. The red blood cell would shrink as it loses water to the	1	
,	salt solution in the test tube.		
		1	

	ii) The process of movement of solvent through a semipermeable membrane from the solution to the pure solvent by applying excess pressure on the solution side is called reverse osmosis. Reverse osmosis is a membrane treatment process primarily used to separate dissolved solutes from water.	1
10 5)	iii) The interaction between them is intermolecular hydrogen. The total vapour pressure of the mixture will be below the vapour pressure of ideal compounds due the strong hydrogen bond between compound A and B. There will be lowering of vapor pressure from ideal solutions hence, shows negative deviation	T
18 D)	It is given that:	
	$K_{H} = 1.67 \times 10^{8} Pa$	
	$p_{\rm CO_2} = 2.5 \text{ atm} = 2.5 \times 1.01325 \times 10^5 \text{ Pa}$	
	= 2.533125 × 10 ⁵ Pa	
	According to Henry's law:	
	$p_{\rm CO_2} = \mathbf{K}_{\rm H} x$	1/2
	$\Rightarrow r = \frac{p_{\rm CO_2}}{p_{\rm CO_2}}$	
	K _H	
		1/2
	$=\frac{2.533125 \times 10^5}{1.67 \times 10^8}$	
	- 0.00152	
	- 0.00152	
	$x = \frac{n_{\rm CO_2}}{n_{\rm cO_2}} \approx \frac{n_{\rm CO_2}}{n_{\rm cO_2}}$	
	We $n_{CO_2} + n_{H_2O} + n_{H_2O}$ can write,	
	n_{CO_1} is negligible as compared to n_{H_2O} [Since,]	1/2
	In 500 mL of soda water, the volume of water = 500 mL	1/2
	[Neglecting the amount of soda present] We	
	can write:	
	500 mL of water = 500 g of water	
	$=\frac{500}{18}$ mol of water	
	= 27.78 mol of water	

$\frac{n_{\rm CO_2}}{n_{\rm H_2O}} = x$ Now, $\frac{n_{\rm CO_2}}{27.78} = 0.00152$	
$n_{CO_2} = 0.042 \text{ mol}$ Hence, quantity of CO ₂ in 500 mL of soda water = $(0.042 \times 44)g$ = 1.848 g	1/2

OSDAV Public School, Kaithal Marking Scheme July Unit Test (2024-25) Subject: CHEMISTRY(043) Class:XII

SET-B

1	b	1
2	a	1
3	d	1
4	b	1
5	a	
		1
6	c	1
7	a	1
8.	d	1
9	Given	1/2
	I = 5A	
	$Time = 20 \times 60 = 1200 s$	
	: Charge = current × time	
	$= 5 \times 1200$	1/2
	= 6000 C	
	According to the reaction.	
	Ni^{2+} (aq.) + 2e \rightarrow Ni (s)	1/2
	Nickel deposite by (2×96487) C = 58.7 g	1/2
	: Nickel deposite by $6000 \text{ C} = \frac{58.7 \times 6000}{2 \times 96487}$	
	= 1.825 g	1/2
10	$T = 300 \ K$	
	$W = 30 \ g$	1/2
	V = 1 L $\pi_{1} = 4.98 har$	
	$\pi_1 = 1.50 \text{ bar}$ $\pi_2 = 1.52 \text{ bar}$	
	$C_2 = ?\pi_1 = C_1 RT$; $\pi_2 = C_2 RT$	1/2
	$\frac{\pi_1}{\pi_2} = \frac{C_1}{C_2}$	
	$C_2 = \frac{\pi_2}{C_1} \times C_1$	
	π_1	
	$C_2 = \frac{1}{4.98} \times \frac{1}{180 \times 1}$	1
	$= 0.0508 \ M$	

11	Ionization of acidified water:		
	$H_2O \rightleftharpoons H^+ + OH^-$ $H_2SO_4 \leftrightarrows 2H^+ + SO_4^{2-}$		
	Ions present in solution are $SO_4^{2^-}$, OH^- and H^+		
	+ve charge move towards cathode whereas -		
	ve charge move towards anode.		
	Reaction at cathode: $H^+ + \sigma^-$		
	$H + H \rightarrow H_2$		
	Reaction at anode OH^{-} ion discharge in preference to SO^{2-}		1
	$OH^- \rightarrow OH + e^-$		1
	$4OH \rightarrow 2H_2O + O_2$ Hence during electrolysis of acidulated		
	water, hydrogen is collected at cathode and		1
	oxygen is collected at anode.		1
12	Generally a primary cell known as		
	Anode Reaction: $Zn \rightarrow Zn^{2+} + 2e^{-}$		1
	Cathode Reaction:		1
	$MnO_2 + NH_4^+ + e^- \rightarrow MnO(OH) + NH_3$		
13	Henry's law states that the solubility of the gas	is directly proportional to the pressure	1
	of the gas at a constant temperature. This means that the more the pressure of the gas		
	is, the more soluble the gas is. Also, if the press	sure of the gas is low, we can say that	
	the gas is not soluble or it is less soluble.		
	pA= KH XA		
	Gas must be ideal and should not undergo any o	compound formation with solvent.	1
14	Weight of non volatile organic	*	
	solvent = 5g Weight of columnt (motor) = 05g		1/2
	weight of solvent, $(water) = 95g$		
	Molecular mass of solvent $(M) = 18$		
	Molecular mass of non volatile		
	solute, $m = ?$		1/2
	solvent at $373K = 760 \text{ mm}$		
	Vapour pressure of solution $= 745$ mm		
	Substituting the value in the given		
	$\frac{p - p}{p} = w \times M$		1/2
	$\mathbf{p}^{\circ} = \mathbf{m} \times \mathbf{W}$ 760–745 5×18		1/2
	$\frac{760}{5\times18\times760} = \frac{}{\mathrm{m}\times95}$		1/2
	$\mathbf{m} = \frac{1}{95 \times 15} = 48\mathbf{g}$		172
	The process of movement of solvent through a	semipermeable membrane from the	1
	solution to the pure solvent by applying excess	pressure on the solution side is called	1
	reverse osmosis.		
15	a) The solution shows positive deviation from D	aoult s law	1
13	$h_{ij} = 2$ as it is a electrolyte and dissociate to give	e 2 jons. Thus as vant hoff factor is	1
	higher for KC1 thus depression in freezing noi	t will be higher. Thus 1M ures	1
	solution has higher freezing point	n will be inglier. Thus five utea	1
	a) A zootronia mixture is a mixture of two or mo	roliquida with a similar bailing point	
	c)Azeotropic mixture is a mixture of two or more liquids with a similar boiling point		1
	and a similar composition in their vapour phase. Azeotropic mixture either has a		
	higher or lower boiling point than its components.		

16	From the given cell representation,	
	Ag ⁺ /Ag couple act as cathode	
	Zn ²⁺ /Zn couple act as anode	
	$E_{cell}^{O} = E_{cathode}^{O} - E_{anode}^{O}$	
	$E_{cell}^{0} = 0.80 - (-0.76)$	
	$E_{cell}^{O} = 1.56 V$	1
	The given cell reaction is,	1
	$Zn(s) + 2Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag$	
	n = 2	
	By Nernst equation,	
	$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log \frac{[Zn^{2+}]}{[Ag^{+}]^{2}}$	
	$E_{cell} = E_{cell}^{o} + \frac{0.059}{n} \log \frac{[Ag^+]^2}{[Zn^{2+}]}$	1
	$E_{cell} = 1.56 + \frac{0.059}{2} \log \frac{[0.01]^2}{[0.1]}$	
	$E_{cell} = 1.56 + \frac{0.059}{2} \log (1 \times 10^{-3})$	
	$E_{cell} = 1.56 - \frac{0.0591}{2} \times 3$	
	$E_{cell} = 1.56 - 0.088 = 1.472 V$	1
17	a) Zinc has higher standard oxidation potential than Iron. Tin, copper and nickel have lower	1
	oxidation potential than iron. as zinc has more tendency to undergo oxidation than iron, it	
	acts as anode and provides protection to iron also known as cathodic protection.	
	b) Conductivity varies with the change in the concentration of the electrolyte. The number of	
	concentration. Therefore conductivity of CH3COOH decreases on dilution	1
	c) When solution is diluted, the total number of ions increases due to increase in the degree	1
	of dissociation	
		1
18 a)	$P_{N_2} = P_T \times mole \ fraction = 5 \times 0.8 = 4$ From Henry's law	1/2
	$P_{N_2} = K_H \times X_{N_2}$ $X_{N_2} = 4 \times 10^{-5}$	1/2
	$X_{N_2} = \frac{n_{N_2}}{n_{N_2} + n_{water}}$	1/2
	$n_{N_2} << n_{water}$ $X_{N_2} = \frac{n_{N_2}}{n_{N_2}}$	_, _
	$n_{N_2} = 4 \times 10^{-4}$	1

18 b)	$= \frac{1}{(780 \text{ mol}^{-1})\times(0.5 \text{ kg})}$ $= 0.5 \text{ mol kg}^{-1}$ Placing the values in Eq. (i), we find the value of van't Hoff factor (i) $i = \frac{1}{(1.86 \text{ K g mol}^{-1})\times(0.5 \text{ mol kg}^{-1})}$	1
	= 1.0753 Step II: Calculation of degree of dissociation of the acid Suppose degree of dissociation at the given concentration is \alpha	1
	Initial conc. C mol kg ⁻¹ At equilibrium C(1-a) Total = C(1+a) $\therefore i = \frac{C(1+a)}{a} = 1+a$ a = i - 1 = 1.0753 - 1 = 0.0753 Step III: Calculation of dissociation	
	constant for the acid (Mola)C = 0.5m (From Eq. (ii)) $K_a = \frac{[CH_2FCOO^{-}][H^+]}{[CH_2FCOOH]} = \frac{Ca^2}{C(1-a)} = \frac{Ca^2}{(1-a)}$ $K_a = \frac{(0.5)(0.07532)^2}{(0.07532)} \frac{(0.5)\times(0.07532)^2}{(0.9247)} 3.07 \times 10^{-3}$	1