

OSDAV Public School, Kaithal PT2 Exam (July,2024) Class : X Subject : Mathematics

SET-B

M.M. : 30

Time: 1 hr 20 min.

General Instructions:- All questions are compulsory.

QNo	Questions					
1	The probability of selecting a vowel from the letter of the word QUADRILATERAL					
	is					
	(a) 4/11 (b) 5/11 (c) 6/11 (d) None of these					
2.	Write a quadratic polynomial if sum of zeroes is 1/4 and product of zeroes is -1	1				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
3.	The value of k for which the system of equations $kx + 2y = 3$ and $2x - 3y = 1$ has	I				
	(a) $\frac{1}{\sqrt{3}}$ (b) $\frac{3}{4}$ (c) $\frac{4}{3}$ (d) none of these					
4	If HCF(x,18) = 2 and $LCM(x,18) = 36$ Then x is	1				
	(a) 2 (b) 3 (c) 4 (d) 5	•				
	Assertion - The quadratic equation $3x^2 - 6x + 3 = 0$ has repeated roots	1				
5.	Reason – The quadratic equation $ax^2 + bx + c = 0$ have repeated roots if					
	discriminant $D > 0$					
	(a.) Both Assertion and Reason are correct, and Reason is the correct explanation for					
	Assertion					
	(b.) Both Assertion and Reason are correct, and Reason is not the correct explanation for					
	Assertion.					
	(c.) Assertion is true but reason is false.					
	(d.) Assertion is false but reason is true.	-				
6.	Find the zeroes of the quadratic polynomial $x^2 - 4x + 3$ and verify the relationship between the zeroes and its coefficients	2				
	between the zeroes and its coefficients.					
7.	Solve $5x^2 - 3x - 2 = 0$	2				
8.	Prove that $\sqrt{3}$ is irrational number.	2				
9.	A card is drawn from a well shuffled pack of cards. Find the probability of card to be					
	(i) a king of Spade (ii) a black card					
	Find x and y by substitution method	2				
10.	3x - y = 3, and $7x + 2y = 20$					
	If α and β are zeroes of quadratic polynomial $f(x) = x^2 - (k+6)x + 2(2k-1)$, then find	3				
11.	the value of k if $\alpha + \beta = \frac{1}{2} \alpha \beta$					
	Determine the nature of roots of quadratic equation $2y^2 + 5y - 3 = 0$. Also find the roots if	3				
12.	exist.					
	If 1 is added to both numerator and denominator of a fraction, it becomes 7/8 and If 1 is	3				
13.	subtracted from both numerator and denominator the fraction becomes 6/7. Find the					
	fraction.	-				
1.4	Determine graphically whether the system of equations $2x - y = 2$ and $4x - y = 8$	3				
14.	1s consistent or inconsistent?					
15.	Find HCF and LCM of numbers 135 and 225.	3				
	Also verify that product of numbers = HCF x LCM					

OSDAV Public School, Kaithal PT2 Exam (July,2024) Class : X Subject : Mathematics

SET-A

M.M. : 30

Time:	1	hr	20	min.

Ger	neral Instructions:- All questions are compulsory.					
Q.No.	Questions	Marks				
1	If $HCF(x,8) = 4$ and $LCM(x,8) = 24$ Then x is	1				
	(a) 8 (b) 10 (c) 12 (d) 14					
2	The probability of selecting a consonant from the letter of the word TRIANGLE is	1				
	(a) $2/7$ (b) $3/8$ (c) $5/8$ (d) $1/8$					
3	If α and β are zeroes of the polynomial $p(x) = 4x^2 + 3x + 7$ then $\frac{1}{\alpha} + \frac{1}{\beta}$ is equal to	1				
	(a) $7/3$ (b) $-7/3$ (c) $3/7$ (d) $-3/7$					
4	The value of k for which the system of equation $kx - y = 2$ and $x - 2y = 3$ has 1					
	unique solution is					
	(a)3 (b) not equal to 3 (c) not equal to zero (d) 0					
5	Assertion - The quadratic equation $4x^2 + 6x + 3 = 0$ has no real roots	1				
	Reason – The value of discriminant is -12					
	(a.) Both Assertion and Reason are correct, and Reason is the correct explanation for Assertion					
	(b.) Both Assertion and Reason are correct, and Reason is not the correct explanation for					
	Assertion is true, but the reason is false					
	(d.) Assertion is false but reason is true					
6	Prove that $\sqrt{5}$ is irrational number.	2				
7	Find the zeroes of the quadratic polynomial $x^2 + 7x + 12$ and verify the relationship					
	between the zeroes and its coefficients.					
8	Solve $25x^2 - 30x + 9 = 0$	2				
9	A card is drawn from a well shuffled pack of cards. Find the probability of the card to	2				
	be a (i) queen of heart (ii) face card					
10	Find x and y by substitution method	2				
	x + 2y = -1					
	2x - 3y = 12					
11	A fraction becomes 4/5 if 1 is added to both numerator and denominator. If however 5 is	3				
	subtracted from both numerator and denominator the fraction becomes ¹ / ₂ . What is the					
	fraction?					
12	. Find HCF and LCM of numbers 336 and 54. Also verify that product of numbers =	3				
	HCF x LCM					
13	Determine graphically whether the system of equations $x - 2y = 2$ and $4x - 2y = 5$	3				
	is consistent or inconsistent?					
14	Determine the nature of roots of quadratic equation $2x^2 - 7x + 5 = 0$. Also find the	3				
	roots if exist.					
15	If α and β are zeroes of quadratic polynomial $f(x) = x^2 - (k+6)x + 2(2k-1)$, then	3				
	find the value of k if $\alpha + \beta = \frac{1}{2} \alpha \beta$					
		1				

AT8 K+B= LXB $K + 6 = \frac{1}{2} [2(2K-1)]$ (1)K+6 = 2K-1 K-2K=-1-6 7 K = +7 (l)K=7 812) 244 54-3 =0 $D = b^2 - 4qc = (5)^2 - 4.2(-3) = 25 + 24 = 49$ 1+1 Roots are real and unequal (1) $\chi = -\frac{b \pm \sqrt{D}}{2\pi} = -\frac{5 \pm \sqrt{49}}{2\times 2}$ 1) = -5 = 7 $\chi = -\frac{5+7}{4}, -\frac{5-1}{4}$ $=\frac{2}{4}$) $-\frac{12}{4}$ = 1, -3 (1)813) Let Numerator = x Denominator = y frection = x/y $\left(\frac{1}{2}\right)$ Acc. to Ist Condition $\frac{\chi+1}{Y+1} = \frac{1}{2}$ 8x-7y=-1 - (1) 1) Acc. to 2nd Condition $\frac{n-1}{y-1} = \frac{6}{7}$ 7n-6y=1-2 シ

Solving Eq. () and (2) x = 13 y= 15 Fraction = $\frac{N}{D} = \frac{B}{15}$ Q14) 2x - y = 2X 2 3 0 4 4 2 -2 4n-y = 8 x 2 3 y 4 -4 0 Graph Consistent 815) $135 = 3^3 \times 5$ $225 = 3^2 \times 5^2$ $HCF = 3^2 \times 5 = 9 \times 5 = 45$ $LCM = 3^3 \times 5^2 = 27 \times 25 = 675$ HCFXLCM = 45×675 = 30375 Product of Numbers = 135×225 = 30375 (Hence verified)

(15) $\left(\frac{1}{2}\right)$ $\binom{1}{2}$ $\left(\frac{1}{2}\right)$ (土)

 $\frac{1}{2}$

 $(\frac{1}{2})$

(Z)

 $\left(\frac{1}{2}\right)$

G)

 $\left(\frac{1}{2}\right)$

y-asis 5 \$ (3,4) (2,2) (2:0) > x-axis 1000 45 214 -4 -3 -2 0 3/0001 / u chu) s (hu) y (h Solution + (3, 4) Since lines are intersecting and have a renique solution So, the equations are consistent

AT8 K+B= LXB $K + 6 = \frac{1}{2} [2(2K-1)]$ (1)K+6 = 2K-1 K-2K=-1-6 7 K = +7 (l)K=7 812) 244 54-3 =0 $D = b^2 - 4qc = (5)^2 - 4.2(-3) = 25 + 24 = 49$ 1+1 Roots are real and unequal (1) $\chi = -\frac{b \pm \sqrt{D}}{2\pi} = -\frac{5 \pm \sqrt{49}}{2\times 2}$ 1) = -5 = 7 $\chi = -\frac{5+7}{4}, -\frac{5-1}{4}$ $=\frac{2}{4}$) $-\frac{12}{4}$ = 1, -3 (1)813) Let Numerator = x Denominator = y frection = x/y $\left(\frac{1}{2}\right)$ Acc. to Ist Condition $\frac{\chi+1}{Y+1} = \frac{1}{2}$ 8x-7y=-1 - (1) 1) Acc. to 2nd Condition $\frac{n-1}{y-1} = \frac{6}{7}$ 7n-6y=1-2 シ

Solving Eq. () and (2) x = 13 y= 15 Fraction = $\frac{N}{D} = \frac{B}{15}$ Q14) 2x - y = 2X 2 3 0 4 4 2 -2 4n-y = 8 x 2 3 y 4 -4 0 Graph Consistent 815) $135 = 3^3 \times 5$ $225 = 3^2 \times 5^2$ $HCF = 3^2 \times 5 = 9 \times 5 = 45$ $LCM = 3^3 \times 5^2 = 27 \times 25 = 675$ HCFXLCM = 45×675 = 30375 Product of Numbers = 135×225 = 30375 (Hence verified)

(15) $\left(\frac{1}{2}\right)$ $\binom{1}{2}$ $\left(\frac{1}{2}\right)$ (土)

 $\frac{1}{2}$

 $(\frac{1}{2})$

(Z)

 $\left(\frac{1}{2}\right)$

G)

 $\left(\frac{1}{2}\right)$

y-asis 5 \$ (3,4) (2,2) (2:0) > x-axis 1000 45 214 -4 -3 -2 0 3/0001 / u chu) s (hu) y (h Solution + (3, 4) Since lines are intersecting and have a renique solution So, the equations are consistent