

O.S.D.A.V. PUBLIC SCHOOL, KAITHAL HALF YEARLY EXAMS (2024-25) CLASS-XII

SUBJECT: MATHEMATICS

Set B

Time allowed: 3 Hrs. Maximum Marks: 80

General Instructions:-

6.

9.

1. This question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

Section A has 18 MCQs and 02 Assertion-Reason based questions of 1 mark each.

Section B has 5 very short answer (VSA)-type questions of 2 marks each.

4. Section C has 6 short Answer (SA)-type questions of 3 marks each.

5. Section D has 4 long answer (LA) type questions of 5 marks each.

6. Section E has 3 source based/case based/passage based/integrated units of assertion of 4 marks each with sub-parts.

Section-A

(All questions are compulsory. No internal choice is provided in this section)

1.	The value of $\sin^{-1}(\frac{-1}{2}) - \sin^{-1}(-1)$:				
	a. $\frac{\pi}{6}$	b. $\frac{5\pi}{6}$	c. $\frac{-\pi}{6}$	d. $\frac{\pi}{3}$	

Let $f: R \to R$ be a function defined by $f(x) = x^3 + 4$ then f is: 2.

b. subjective c. bijective d. none of these a. injective

If |A| = |kA|, where A is an square matrix of order 2, then sum of all possible of k is: 3.

c. 2 d. 0

The domain of the function defined by $\sin^{-1}(\sqrt{x-1})$ is: 4.

b. [-1, 1] c. [0, 1] d. [0. 2]

If x = 2 at $y = at^2$ then $\frac{d^2y}{dx^2}$ at $t = \frac{1}{2}$ is: 5.

a. $\frac{1}{2a}$ c. 2a d. -2a Write the order of the product matrix: $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

b. 3 x 3 c. 1 x 3

a. 1 x 1 d. 3 x 1

If $A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}$ and $A^2 - KA - 5I = 0$, then value of k is: 7. a. 3 b. 7 d. 9 c. 5

Let $A = \{1, 2, 3\}$ and $R = \{(1, 2), (2, 3)\}$ be a relation in A. Then the minimum number of ordered pairs may 8.

be added, so that R becomes an equivalence relation is:

b. 5 d. 4 a. 7 c. 1

If $y = (\sqrt{\tan x})$ then $\frac{dy}{dx}$ at $x = \frac{\pi}{4}$ is: a. 1 b. 0 c. 1/2 d. none of these

A is a square matrix of order 2 and |A| = 7, then find the value of |2AA'|10.

	a.196	b.98	c.4	d.2	
1.	$\int e^{\log \sin x} dx$ is equal to:				

1

a. $\sin x + c$

b. $\cos x + c$

 $d - \sin x + c$

If $f(x) = \begin{cases} ax + 3 & 0 < x \le 1 \\ 2x^2 - x & 1 < x < 2 \end{cases}$ is continuous on (0, 2) then the value of a is: 12.

c. -1

d. -2

 $\int_0^{\pi^2/4} \frac{\sin \sqrt{x}}{\sqrt{x}} dx \text{ is equal to:}$ 13.

a. 2

b. 1

c. π

d. $\pi/2$

14. If the sides of square are decreasing at the rate of 1.5c.m./sec. the rate of decrease of its perimeter is:

a. 1.5cm/sec

b. 6cm/sec

c. 3cm/sec.

d. 2.25cm/sec.

15. The function f(x) = ax + b is strictly decreasing for all $x \in R$ if:

a. a = 0

b. a < 0

c. a > 0

d. a = 1

If $x = a^{sin-1}t$ and $y = a^{cos-1}t$ then $\frac{dy}{dx} =$ 16.

a. 0

b. 1

c. x

d. y

If A is a singular matrix, then A (adj A) is: 17.

a. Null Matrix

b. Scalar Matrix

c. Identity matrix

d. None of these

18. If A is a skew symmetric matrix of order 3, then the value of |A| is:

a. 0

b. 3

d. 9

d. 27

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer and of the following choices.

a. Both (A) and (R) are true and (R) is the correct explanation of (A).

b. Both (A) and (R) are true and (R) is not the correct explanation of (A).

c. (A) is true but (R) is false.

(A) is false but (R) is true.

e. 20. Assertion (A): The minimum value of $f(x) = x^2 + 2bx + c$ is $c - b^2$

f. Reason (R): f'(-b) = 0

Assertion (A): Principal value of $\sin^{-1}(\frac{1}{\sqrt{2}}) = \pi/4$ 19.

Reason (R): Principal value of Cot⁻¹ $(\frac{1}{\sqrt{3}}) = 2 \pi /3$

Assertion (A): The minimum value of $f(x) = x^2 + 2bx + c$ is $c - b^2$ 20.

Reason (R): f'(-b) = 0

Section B

 $y = \cos^{-1}(\frac{1-x^2}{1+x^2})$, 0 < x < 1 find $\frac{dy}{dx}$ 21.

Evaluate: $\int \frac{1}{\sqrt{x^2+2x+4}} dx$ 22.

If $A = \begin{bmatrix} 3 & -2 \\ 4 & -2 \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ find k so that $A^2 = KA - 2I$ 23.

Show that the function given by $f(x) = \frac{\log x}{x}$ has maximum at x = e24.

25. Evaluate $\int \frac{\cos 2x}{(\cos x + \sin x)^2} dx$

Section C

- 26. If $y = (\tan 1 x)^2$ show that $(x^2 + 1)^2 y_2 + 2x (x^2 + 1) y_1 = 2$
- 27. Evaluate $\int \frac{2x+1}{(x+1)^2(x-1)} dx$
- 28. Show that $y = \log (1+x) \frac{2x}{2+x}$, x > -1 is an increasing function of x throughout its domain.
- 29. Evaluate $\int e^x \left(\frac{1+\sin x}{1+\cos x}\right) dx$
- 30. Solve: $2 \tan^{-1} (\cos x) = \tan^{-1} (2 \csc x)$
- 31. Find x if:

$$\begin{bmatrix} x & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$$

Section - D

- 32. Differentiate the following w.r.t. x sin-1 $\left(\frac{2^{x+1}}{1+4^x}\right)$
- 33. If $A = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1 \end{bmatrix}$ find A^{-1}

Hence solve the system of equations:

$$3x + 3y + 2z = 1$$

$$x + 2y = 4$$

$$2x - 3y - z = 5$$

- 34. $\int_0^{\pi/2} (2 \log \sin x \log \sin 2x) dx$
- 35. A Relation R is defined on N x N as:

(a, b) R (c, d) (=)
$$a - c = b - d$$
.

Show that R is an equivalence relation.

Section E

36. A class teacher wants to make different groups of students so that they can be given different tasks of enlighting other about the effects of poor AQI (Air Quality Index) level. Students are making groups with friends but the teacher said not like this, we will make a group of students with roll number in such a way that the difference of roll number is divisible by 3.

Based on the above information, answer the following questions:

- Name the properties which whole group should satisfy to get divided into different groups (equivalence classes).
- ii. Provide the relation for the roll number of students in the group of student with roll number 5.
- iii. Which roll number students will be in the group of students with roll number 5 if there are 30 students in the class?

Which roll number students will be in the group of student with roll number 2, if there are 20 students in the class?

A housing society wants to commission a swimming pool for its residents. For this, they have to purchase a 37. square piece of land and dig this to such a depth that its capacity is 250 cubic metres. Cost of land is Rs. 500 per square metre. The cost of digging increases with the depth and cost for the whole pool is Rs. 4000 (depth)².

Suppose the side of the square plot is x metres and depth is h metres. On the basis of the above information, answer the following questions:

i. Write cost C9h) as a unction in terms of h. 1

ii. Find critical point. 1

iii. (a) Use second derivative test to find the value of h for which cost of constructing the pool is minimum What is the minimum cost of construction of the pool? 2

or

- (b) Use first derivative test to find the depth of the pool so that cost of construction is minimum Also iii. find relation between x and h for minimum cost. 2
- 38. Area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is given by the determinant

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y & 1 \end{vmatrix}$$

Since, area is a positive quantity, so we arways take the absolute value of the determinant. Also, the area of the triangle formed by three collinear points is zero. Base on the above information, answer the following questions:

- i. Find the area of the triangle whose vertices are (-2, 6), (3, -6) and (1, 5).
- ii. Using determinants, find the equation of the line joining the points A(1, 3) and B(0,0).
- iii. If the points (2, -3), (k, -1) and (0, 4) are collinear, then find the value of k.

If the area of a ABC with vertices A(1, 3), B(0, 0) and C (k, 0) is 6 sq. units, then find the value of k.

Half Yearly Exams (2024-25))	18
Machiematics (Core)	0.1010	7
1 344/11/1 / 19/2/1	1011	
in but given by the students be	Jula 1	uu
	Marks "	
O. No. Value paints / Key paints	Marks alloted to each key paint	Total points
1 1 1 2 2 7	1	1
2(B) (C) Bijective	1.	1
3 (d) TT/3	1	1
4 (a) [1,2]	1	1
(b) 3×3	1	1
-6(B) (b) 7	1	1
7(B) (d) 0°	1	1
8 (a) 196	14	1
$\frac{10(B)}{9(a)}$	1	1
3 (B)	4	1
10 (a) <u>1</u> 2a	1	1
12(B) (d)2	1	1
12 (b) 6 C. m/See.	4	

13 (b) a <0		
14 (C) -6xx+C	-	1
15(a) (a) 2	1	
(a) Null Matrin	1	_ 1
(a), o	1	- 1
19 (b) B H A	1	1
(2006) not the Correct explanation of a	1	1
30 20 (b) Both A and R are true and R is not the Correct explanation of A.	1	1
1000		(+)
(b) JJH+2N+4	la,	
$\int \pi^2 + 2\pi + 4 + 1 - 1$	1/2	
$\int \frac{1}{(x+1)^2 + (x_3)^2} dx$	1/2	2
log (x+1)+5x2+2x+4/+C	1	1.2
$\mathcal{J} = Cos^{-1}\left(\frac{1-n^2}{1+n^2}\right).$		
but n= lumin		Al.
y = Cas (1 - texto)	1/2	*

$$y = (ox^{-1}(cos20))$$

$$y = 20$$

$$y = 2 + en^{-1}n$$

$$dy = \frac{2}{1+x^{2}}$$

$$y(n) = \frac{1 + egn}{x^{2}}$$

$$y(n) = \frac{1 - egn}{x^{2}}$$

$$y(n) = \frac{1}{x^{2}}$$

$$y(n) = \frac{1}{x^{2$$

$$\int \frac{(as2x)}{((asx+sinx)^2)} \int \frac{(as^2x-sin^2x)}{((asx+sinx)^2)} dx$$

$$\int \frac{(asx+sinx)}{((asx+sinx)^2)} \frac{dx}{((asx+sinx)^2)} dx$$

$$\int \frac{(asx+sinx)}{((asx+sinx)^2)} \frac{dx}{(asx+sinx)^2} dx$$

$$\int \frac{(asx+sinx)}{((asx+sinx)^2)} \frac{dx}{(asx+sinx)^2} dx$$

$$\int \frac{(asx+sinx)}{((asx+sinx)^2)} \frac{dx}{(asx+sinx)^2} dx$$

$$\int \frac{(asx+sinx)}{(asx+sinx)^2} \frac{dx}{(asx+sinx)^2} dx$$

$$\int \frac{(asx+sinx)}{(asx+sinx)} \frac{dx}{(asx+sinx)} dx$$

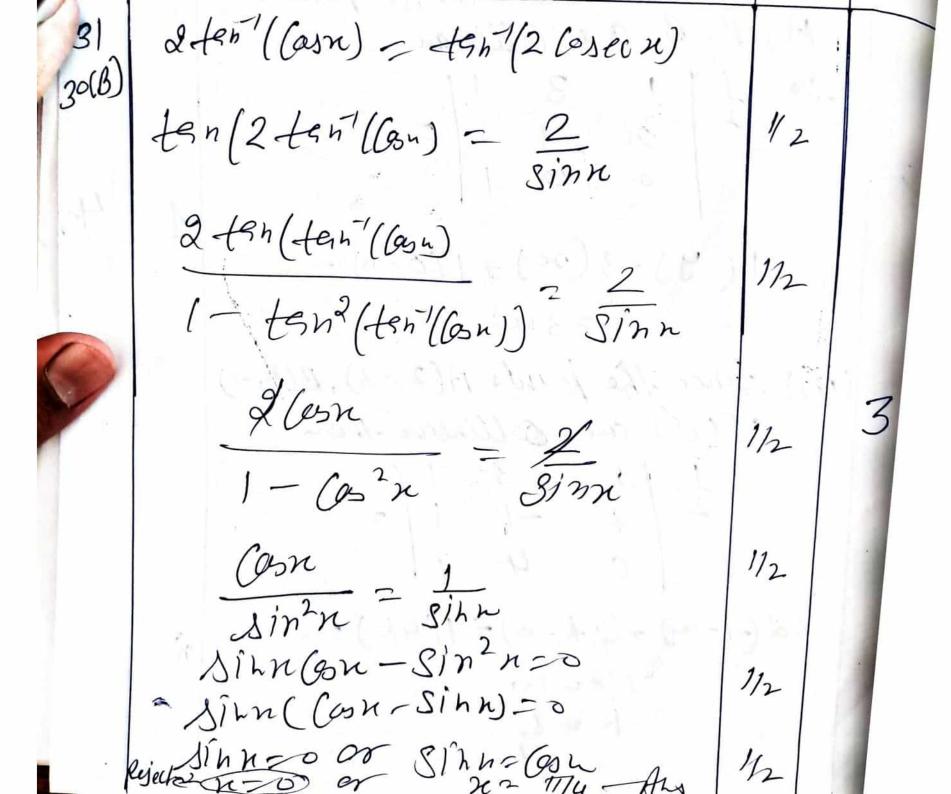
$$\int \frac{(asx+sinx)}{(asx+sinx)} \frac{(asx+sinx)}{(asx+sinx)} dx$$

$$\int \frac{(asx+sinx)}{(asx+sinx)} \frac{dx}{(asx+sinx)} dx$$

3×3

$$\frac{3}{4} \log \left| \frac{n-1}{n+1} \right| - \frac{1}{2(x+x)} + C - \frac{1}{4} + C - \frac{1}{4}$$

i. fly is increaving for 27-1 1/2 3 Jek (It Sink) du Jen (I+Cash + Sink) du 29(6) Jen (2 Castr + 7 Sihn/2 Cost/2) du en (= sect + tank) du 1 1/2 ertank + C -Am



$$32 A = \begin{bmatrix} 3 & 1 & 2 \\ 3 & 2 & -3 \\ 2 & 0 & -1 \end{bmatrix}$$

$$|A| = 3(-2) - 1(-3+6) + 2(-4)$$

$$= -6 - 3 - 8 = -17 + 0$$

$$aelj A = (-2 - 3 - 4)^{9}$$

$$+1 - 7 + 2$$

$$-7 + 15 3$$

$$=\begin{bmatrix} -2 & 1 & -7 \\ -3 & -7 & 15 \\ -4 & 2 & 3 \end{bmatrix}$$

1/2

1/2

$$A' = -\frac{1}{17} \begin{bmatrix} -2 & 1 & -7 \\ -3 & -7 & 15 \\ -4 & 2 & 3 \end{bmatrix}$$

$$3x + 3y + 22 = 1$$

 $x + 2y = 4$
 $2x - 3y - 2 = 5$

$$\begin{bmatrix} 3 & 3 & 2 \\ 1 & 2 & 0 \\ 2 & -3 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}$$

$$A' \quad X = B$$

$$X = (A')^{-1}B = (A^{-1})^{2}B$$

$$X = -\frac{1}{17} \begin{bmatrix} -2 & -3 & -4 \\ 1 & -7 & 2 \\ 4 & -15 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ -7 & 15 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \\ -17 & 15 & 3 \end{bmatrix} \begin{bmatrix} -34 \\ -17 & 68 \end{bmatrix}$$

$$x = 2 \quad y = 112 = +1 \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = +1, \quad 3 = -4$$

$$x = 2, \quad y = 1, \quad$$

i. a-e= b-f s. (9,6) R(e,f) +(e,6), (c,d), (e,f) & NAN · R is transitive os R is an equivalence Relation. 1/2 y= SIn (2/1+4/2) 2216 1/2 put 2 = ten 0 J= SIn (2-talo) 1/2 J= sin' (sin20) 1/2 1/2 y=2+an 2" $\frac{dy}{dn} = \frac{2}{1+(2^n)^2} 2^n \log 2$ 15 2 Helg2 1+4 R dy -1/2 35 T=5 (2 log 8ih 212 - log 8ih 212) dk I= (leg sin x - leg sinzu) dr 1/2 I= log sinzu du I-July Stmin du
2 Siza Cosu I log-tann dn 1/2 I= Slostenndn-Slos2du 1/2 I= I1 - [rlus] [1]2

I = 0 - [rlus] 0 - Ilas 2 = -[ley 2-And 1/2 I,= Sløytenredu - (b) II= Slogten(I-u)du forI, II= Sby Catudu - 23 2I1- Sley text. Grude 2I1- Sley text. Grude 2I1- Sles I du 7 2I=0

Section E Capacity = areax depth = x2h = 250 -) $\chi^{\frac{1}{2}} = \frac{250}{0}$ Cost (c) = 500 n2 + 4000 h ·C= 1500/200/+4000/2 de = 125000 + 8000 h +125000 = +8000 h 125 = R3 => R-5 (i) 1xC = 125000 × 2 + 8000 is tre when h-- 5 is h = 5 is the both of minima Minimum (et = 25000 x 2 + 4000/25) - 50000 + 25000 2 = \$75000 08

2 = 250 = 1 x = 250 = s's x=lom · 6 x=4h 37. (i) The properties are reflexive, symmetric 1 transitive. (i) let it be the roll number of Student who is in the goods. os A.T.O 21-5=3H (ii) Rell number of Students Can be Calculated from 19 d=0, 1, 2, 3, 4, -1, - -M=5, 8, 11, 14, 17, 2, So stall number of students in. the required group - [5] = {2,5,8,11,19,17,20,23, 26,271 x-2 = 3Consolp[2]={2,5,8,11,14,17,20}.

Area of
$$\Delta = \frac{1}{2} \begin{vmatrix} -\lambda & 6 \\ 3 & -6 \end{vmatrix}$$

1

 $\frac{1}{2} \left[-2(-6-5) - 6(3-1) + 1(5+6) \right]$
 $\frac{1}{2} \times 31 = 15 \times 589 \text{ unit}$

3818)

(ii) We plek y) be any posted bying on the line joining the founds

A i, P, B are Gellihear.

A, P, B are Gellihear.

A, P, B are Gellihear.

A, P, B are Gellihear.

(iii) Since the points $A(2-73)$, $B(5-7)$
 $C(0,4)$ are Gellihear then

 $\frac{1}{2} \begin{vmatrix} \lambda & -3 & 1 \\ k & -1 & 1 \\ 0 & 4 & 1 \end{vmatrix} = 0$
 $2(-4) + 3(k-0) + 1(4k) = 0$
 $7(-2) = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$
 $1 = 10$

Area of DABC = 6 ST. 4 with 1(0-0)-3(-K)+1(0)= f Q4 3k= f GX2 K= £12 = £4