OSDAV Public School, Kaithal

December Exams (2024-25)

Class: XI

SET-A

Subject: Applied Maths

Time: 3 Hrs. M.M.: 80

General Instructions:-

- 1 All questions are compulsory.
- This question paper has 5 Sections. Section A has 20 questions of 1 mark each which includes 18 M.C.Q.'s and 2 Assertion Reasons Section B has 5 Questions of 2 marks each. Section C has 6 questions of 3 marks each. Section D has 4 questions of 5 mark each and Section E has 3 case study based question of 4 marks each.

Section - A

Q1 The centre and radius of the circle $x^2 + y^2 - 4x - 2y - 4 = 0$ are

- a) (2, 2); 2
- b) (2, 1); 4
- c)(2, 1); 3
- d) (-2, -1); 3

Q2 The two geometric mean between 1 and 64 are

- a) 1 and 64
- b) 4 and 16
- c) 2 and 16
- d) 8 and 16

Q3 If $\sum x_i = 24$, $\sum y_i = 55$, $\sum x_i y_i = 144$, n = 10, then Cov. (x, y) between x and y is

- a) -2.5
- b) 1.2
- c) 1
- d) 4

Q4 If A and B are two independent events such that $P(A \cup B) = 0.6$ and P(A) = 0.2, then the value of P(B) is

- a) 0.4
- b) 0.8
- c) 0.1

d) 0.5

Q5 **Statement I**: Some ships are boats.

Statement II: All boats are submarines.

Statement III: Some submarines are yachts.

Conclusion I: Some submarines are boats.

Conclusion II: Some submarines are ships.

Conclusion III: Some yachts are boats.

Conclusion IV: Some yachts are ships.

Which of the following is correct?

- a) Only conclusion I follow
- b) Only conclusion II follow
- c) Both conclusions I and II follows
- d) Both conclusions III and IV follows

Q6 The number of ways in which 5 boys and 3 girls can be arranged so that no two girls may sit together, is

- a) 1440
- b) 14400
- c)5!
- d) ${}_{3}^{6}P$

Q7 The odd one among the numbers 253, 136, 352, 324 is

- a) 253
- b) 136
- c) 352
- d) 324

00 L.	4_:1_ 6	MICCIONCY:		CHENOS? then berry in	CONTINUE?
					s 'ONLINE' written in that code
a)	OLNNIE	b) ON	NLIE	c) OEILNN	d) OLEINN
Q9 If	3 @ 6 *9 = 45 a	and 9 @ 8 * 7 =	= 105 then the	value of 5 *6 @ 3 is	
a)	67	b) 68	c) 69	d) 70	
Q10 T	he value of Boy	wley's coefficie	ent of skewness	s lies between	
a)	-2 and 1	b) -2 a	nd 2	c) 0 and 1	d) -1 and 1
Q11 I	f – means \div , + r	neans x, ÷ mea	ns -, x means +	, then the value of 48	$\div 5 + 8 \times 10 - 2 \text{ is}$
a)	31	b) 13	c) 83	d) 38	
Q12 I:	$fA = \{a, b, c, d\}$	A, e and $B = {$	d, e, f, g} then	$(A-B) \cup (B-A)$ is	
a)	Ø	b) {a, b, c}	c) {f,	g} d) {a,	b, c, f, g}
Q13 I:	f y = (2x + 3)	$5x^2 - 7x + 1),$	then $\frac{dy}{dx}$ at $x = 1$	l is	
a)	13	b) 14	c) 15	d) 16	
Q14 I:	$f \log_{27} x = \frac{4}{3} tl$	hen value of x	is		
a)	81	b) 9	c) 64	d) 256	
Q15 T	he first quartile	of the data 21,	15, 40, 30, 26	, 45, 50, 54, 60, 65, 70) is
a)	25	b) 26	c) 4	d) 50	
	f the first four coution is	entral moments	s of a frequency	y distribution are 0, 3,	0.4 and 14, then the kurtosis of the
a)	Mesokurtic	b) platyk	rurtic	c) leptokurtic	d) none
Q17 V	Which of the fol	lowing binary 1	number is equi	valent to decimal num	ber 35?
a)	$(10010110)_2$	b) (10	001010)2	$c) (100000)_2$	d) (100011) ₂
Q18 I:	$f_{7}^{n}C = {}_{5}^{n}C \text{ then}$	n is			
a)	20 b)) 12 c) 6	d) 30	
Asser	tion Reason Ba	ased Questions	s: Choose acco	ording to these option	s in Q 19 and 20
b) c)		are true and F R is false.		t explanation of A. rect explanation of A	. .
Q19 A	Assertion (A):	The average of	f first 20 natura	al numbers is 10.5	
Re	eason (R): Sur	n of first n natu	ıral numbers is	$\frac{n(n+1)}{2}$	

Q20 Assertion (A): The equation of straight line which passes through the point (-4, 3) and having slope $\frac{1}{2}$

is 2y - x + 10 = 0

Reason (R): The equation of line passing through the point (x_1, y_1) and having slope m is given by $y_1 - y_1 = m(x - x_1)$

Section - B

Q21 Convert 213.25 in its binary form.

Q22 Solve for x:
$$\log(x + 4) - \log 7 = 3 \log 2 - \log(x + 5)$$

Q23 Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
, $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 6\}$ Find i) $A' \cap B'$ ii) $A - B$

Q24 If $A = \{1, 2, 3, 4, \dots, 14\}$ and a relation R is defined from A to A by

$$R = \{(x, y): 3x - y = 0; x, y \in A\}.$$

- i) Write R in roster form
- ii) Write its domain and range of R

Q25 For what values of k, the function
$$f(x) = \begin{cases} 2x + 1, & x < 2 \\ k, & x = 2 \\ 3x - 1, & x > 2 \end{cases}$$
 is continuous at $x = 2$.

Section – C

Q26 A household in Alwar, Rajasthan consumed 205 kl of water in a month. Calculate the water bill for the month. The tariff plan of Rajasthan is as given below:

Units of	Upto 8	8- 15	15 - 40	>40
Consumption				
(in kl)				
Price per kl	₹ 1.89	₹ 2.42	₹ 4.84	₹ 6.05
consumed				

Meter rent = ₹ 42 per month; Fixed charge = ₹ 30.25; Sewerage charge = 20% of consumption charges.

Q27 Find the domain and range of the function $f(x) = \frac{x^2 - 36}{x - 6}$

Q28 A coin is tossed twice and four possible outcomes are assumed to be equally likely. If E is the event: "both head and tail have occurred" and F is the event "atmost one tail is observed", find P(E), P(F), $P(\frac{E}{F})$, $P(\frac{\bar{E}}{F})$

Q29 Differentiate $\frac{3x^2-2}{x^2+7}$ with respect to x

Q30 Find the number of arrangements of the letters of the word MATHEMATICS. In how many of these vowels occur together.

Q31 What was the day of the week on 2nd October 1869(birthday of Mahatma Gandhi)?

Section - D

Q32 What will ₹ 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10 % compounded annually ?

Q33 The diameters of circles (in mm) drawn in a design are given below:

Diameters(in	33 – 36	37 – 40	41 – 44	45 – 48	49 – 52
mm)					
No. of circles	15	17	21	22	25

Calculate the standard deviation and mean diameters of the circles.

Q35 Find Karl Pearson's coefficient of correlation between x and y of the following data:

x:	3	4	8	9	6	2	1
y:	5	3	7	7	6	9	2

Section - E

Q36 In a bolt factory machines A and B manufacture respectively 25% and 35% and remaining bolts of the total bolts of the factory are manufactured by machine C. Of their output 5%, 4% and 2% are respectively defective bolts. Based on above information, answer the following;

- (i) Find the bolts manufactured in factory by machine C.
- (ii) Find the probability that bolt drawn is defective, given that bolt is manufactured by machine B.
- (iii) Find the probability that bolt drawn is defective.

Q37 A manufacturer sells a ceiling fan to a dealer for ₹ 5000. The dealer sells it to the consumer at a profit of ₹ 1500. If the sale is intrastate and the rate of GST is 18%

- (i) Find the GST charged by the manufacturer from the dealer.
- (ii) Find the total amount paid by dealer to manufacturer.
- (iii) Find the GST charged by the dealer from the consumer.

Q38 In a park, two paths of width 5 m and 4 m are crossing at the centre point O(0,0) as shown in the following figure:

Four trees A, B, C and D are situated at four sides of two paths. The coordinates of the trees A, B, C and D are (6, 8), (12, 5), (-5, 0) and (-3, 4) respectively. Based on above information answer the following questions .

- i) What is the slope of line CD.
- ii) Find the equation of line AB.
- iii) Find the distance of tree C from the origin.

OSDAV Public School, Kaithal

December Exams (2024-25)

Class: XI

SET-B

Subject : Applied Maths

Time: 3 Hrs. M.M.: 80

General Instructions:-

a) -2.5

ich includes 18 Section C has 6 on E has 3 case

1 2	This question M.C.Q.'s and questions of	d 2 Assertion	Sections Reasons . Section	Section B has D has 4 quest	20 questions of 1 5 Questions of 2 ions of 5 mark o	2 marks each. S
				Section	$-\mathbf{A}$	
Q1 W	hich of the follo	owing binary 1	number is	equivalent to d	ecimal number 1	50?
a)	$(10010110)_{2}$	b) (1	0001010	c)	$(100000)_2$	d) (100011) ₂
Q2 Th	e odd one amo	ng the number	rs 7, 13, 1	9, 25, 29, 37, 4	3 is	
a)	25	b) 13	c) 19	d) 29		
Q3 If	$A = \{ a, b, c, d, \}$	e) and $B = \{$	d, e, f, g	$\{ \text{then } (A - B) \}$	$\cap (B-A)$ is	
a)	Ø	b) {a, b, c}		c) {f, g}	d) {a, b, c	;, f, g}
Q4 Th	e number of w	ays in which 6	different	rings can be w	orn in four finger	s of a hand are
a)	24	b) 4 ⁶		c) 6 ⁴	d) 10	
Q5 If	${}_{8}^{n}C = {}_{9}^{n}C$ then r	n is				
a)	8 b)	17 c) 6	d) 72		
Q6 If	3 @ 6 *9 = 27	and 9 @ 8 * 7	= 91 the	n the value of 6	@ 3* 5 is	
a)	67	b) 68	c) 69	d) 58		
Q7 Th	e second quart	ile of the data	21, 15, 40	0, 30, 26, 45, 50	, 54, 60, 65, 70 is	;
a)	25	b) 26		c) 45	d) 50	
Q8 Th	e value of Bow	ley's coefficie	ent of ske	wness lies betw	een	
a)	-2 and 1	b) -2	and 2	c) 0 and	d 1 d)	-1 and 1
Q9 If	y = (x - 1) (5x)	$x^3 + 3x - 1$, th	hen $\frac{dy}{dx}$ at	x = 1 is		
a)	7	b) 4	c) 5	d) 6		
Q10 I	$f \sum x_i = 24, \sum y$	$y_i = 55, \sum x_i y_i$	= 144, n	= 10, then Cov	. (x, y) between x	and y is

b) 1.2 c) -1

d) 4

Q11 I1	n a certain code	HARYANA is	written as 819'	7151, then 1	now is DEL	HI written in that code
a)	45398	b) 45236	c) 453	89	d) 4567	78
Q12	Statement I :	Some ships are	boats.			
	Statement II	: All boats are	submarines.			
	Conclusion II Conclusion II Conclusion II Conclusion II Which of the sa) Only conclusion Conclusion II Which of the sa) Only conclusion Conclusion II And the same conclusion II Both conclusion II And the same c	: Some submar I : Some submar II : Some yacht V : Some yacht following is contained in the submar clusion I follow lusions I and II lusions III and	arines are ships. Its are boats. Its are ships. Its are shi			
Q13 If	A and B are tw	o independent				(A) = 0.2, then the value of $P(B)$ is
	a) 0.75	b) 0.8	c) 0.15	d)	0.5	
Q14 I	\hat{z} – means \div , + r	neans x, ÷ mea	ns -, x means +	, then the v	alue of 48 ÷	$5 + 8 \times 10 - 2$ is
a)	31	b) 13	c) 83	d) 38		
Q15 T	he value of $9^{\frac{1}{3}}$.	$.9^{\frac{1}{9}}.9^{\frac{1}{27}}$. to ∞ is			
a)	1	b) 3	c) 9	d) 27		
Q16 T	he centre and ra	adius of circle :	$x^2 + y^2 - 6x -$	8y - 11 = 0	are	
a)	(2, 2); 2	b) (3, 4);	6 c) (2,	, 1); 3	d) (-2, -	-1); 3
Q17 T	he value of <i>log</i>	$t_{2\sqrt{3}}$ 1728 is				
a)	8	b) 6	c) 5	d) 9		
	the first four cution is	entral moments	s of a frequency	y distributio	on are 0, 3, 0	0.4 and 14, then the kurtosis of the
a)	Mesokurtic	b) platyk	curtic	c) leptoku	ırtic	d) none
Asser	tion Reason Ba	ased Questions	s: Choose acco	rding to th	ese options	in Q 19 and 20
b) c)	Both A and R Both A and R A is true and I A is false and	are true and R R is false.		-		
	essertion (A): T : $+10 = 0$	he equation of	straight line wh	ich passes t	through the	point (-4, 3) and having slope $\frac{1}{2}$ is

Q20 Assertion (A): The average of first 20 natural numbers is 10.5

 $y_1 = m(x - x_1)$

Reason (R): The equation of line passing through the point (x_1, y_1) and having slope m is given by y –

Reason (R): Sum of first n natural numbers is $\frac{n(n+1)}{2}$

Section - B

Q21 Convert 337.75 in its binary form.

Q22 Solve for x:
$$\log(x + 4) - \log 7 = 3 \log 2 - \log(x + 5)$$

Q23 Let
$$U = \{2, 4, 6, 8, 10, 12\}, A = \{2, 4\}, B = \{4, 6, 10\}$$
 Find i) $A' \cup B'$ ii) B - A

Q24 If $A = \{1, 2, 3, 4, \dots, 14\}$ and a relation R is defined from A to A by

$$R = \{(x, y): 3y - x = 0; x, y \in A\}.$$

- i) Write R in roster form
- ii) Write its domain and range of R

Q25 For what values of k, the function
$$f(x) = \begin{cases} kx^2, & x > 1 \\ k, & x = 1 \\ 4, & x < 1 \end{cases}$$
 is continuous at $x = 1$.

Q26 Find the domain and range of the function $f(x) = \frac{x^2 - 81}{x - 9}$

Q27 Differentiate
$$\frac{5x^3+7}{x^2-6}$$
 with respect to x

Q28 Find the number of arrangements of the letters of the word ALGEBRA. In how many of these vowels occur together.

Q29 A family in Jaipur, Rajasthan consumes 2950 units of electricity in a month. It has a connection load of 11 kW. Calculate the electricity bill for the month if no surcharge is applicable. The energy tax is NIL and the energy duty is ₹ 0.40 per unit. The tariff plan is given

No. of units\month	0- 50	51 – 150	151 - 300	301 – 500	> 500
Price	₹ 4.75	₹ 6.50	₹ 7. 35	₹ 7.65	₹ 7.95
Fixed	₹ 230	₹ 230	₹ 275	₹ 345	₹ 400
charges per month					

Q30 What was the day of the week on 15th august 1947?

Q31 A coin is tossed twice and four possible outcomes are assumed to be equally likely. If E is the event: "both head and tail have occurred" and F is the event "atmost one tail is observed", find P(E), P(F), $P(\frac{E}{F})$, $P(\frac{\bar{E}}{F})$

Section - D

Q32 Find the Karl Pearson's coefficient of skewness for the following data:

x:	10	11	12	13	14	15
f:	2	4	10	8	5	1

Q33 A company has an option to invest in two projects A and B, both of which require an initial investment of ₹ 3,50,000. Project A is for a duration of 3 years and is estimated to generate an income of ₹ 1,00,000; ₹

2,70,000 and ₹ 1,90,000 in first, second and third year respectively whereas project B is of duration of 2 years and is estimated to generate an annual income stream of ₹ 2,70,000 per year. In which project should the company invest, if the future values are discounted at 12% per annum.

Q34 Calculate the standard deviation of the following data:

Marks	10 - 20	20 - 30	30 – 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of	5	12	15	20	10	4	2
students							

Q35 What will ₹ 500 amounts to in 10 years after its deposit in a bank which pays annual interest rate of 10 % compounded annually?

Section – E

Q36 In a park, two paths of width 5 m and 4 m are crossing at the centre point O(0,0) as shown in the following figure:

Four trees A, B, C and D are situated at four sides of two paths. The coordinates of the trees A, B, C and D are (6, 8), (12, 5), (-5, 0) and (-3, 4) respectively. Based on above information answer the following questions:

- i) What is the slope of line CD.
- ii) Find the equation of line AB.
- iii) Find the distance of tree C from the origin.

Q37 In a bolt factory machines A and B manufacture respectively 25% and 35% and remaining bolts of the total bolts of the factory are manufactured by machine C. Of their output 5%, 4% and 2% are respectively defective bolts. Based on above information, answer the following;

- (i) Find the bolts manufactured in factory by machine C.
- (ii) Find the probability that bolt drawn is defective, given that bolt is manufactured by machine B.
- (iii) Find the probability that bolt drawn is defective.

Q38 A manufacturer sells a ceiling fan to a dealer for ₹ 5000. The dealer sells it to the consumer at a profit of ₹ 1500. If the sale is intrastate and the rate of GST is 18%

- (i) Find the GST charged by the manufacturer from the dealer.
- (ii) Find the total amount paid by dealer to manufacturer.
- (iii) Find the GST charged by the dealer from the consumer.

() A is the and R is falle. 06 Ald in Handles 6) Both ou three and his not the correct 51 81 71 7110001) (P ti & flood though (& 91 51 97 19 M (0 81 01 5817 1514103 (P 11 21 01 1 puol- (P 81 (9 8 DINNIE (0 428 CP ochhi (9 () Both Contlew on I and II follows (P 5.0 (9 7.1 (9 6 91 puo h Ef (1/2) (2 Yellue Johnts / thinks to sider ON.D Mal awarded but done by the students are suitety Note: - Any selevant amoer don't given here in STOW PRATH, IX-KUD aps of first / most fresson School Exam 2024-25

lin - for = lin + for = f(2) ly 2x+1 = ly 3n-1= K =) lin 2(2-h)+1= t | lin 3(2+h)-1= t h-12 4+1= t | h-12 6-1= t 7 4+1=k 2 S) [K=5] Section-C Water Consumption charges 26 2 (8 x 1.69+ 7 x 2.42 + 25 x 4.84 + 165 X 6:05 1 = # 1157,31 Surgerage Charge = 20 x 1157,31 = 230,26 Mired charge = # 80,25 Meter lest = £ 42-Total Water Bill = Water consumption Charge + Shourage Charge -Fined charge + Meter == £(1151.31+230.26+ 30,25+42) = I 1453.82 101) = x2-36 Domain 1 R- 263 1 y= 100 = (n+6) (-6) y = x+6 n=9-6 22 AS N + 6 -> 9-6+1 => 9+12 Remye = R - {123

Total outromes = [HH, HT, TH, 77] C = SHT, THS F = FAT, TH, HAS (f) = n(f) = 3 $P\left(\frac{\overline{E}}{F}\right) = \frac{P\left(\widehat{E}\cap F\right)}{(F)} =$ REUF) - 1- PEUF) 1-P(E) PEUF) = PE) HAS) - REAR) 二十十一号二号 $(\frac{E}{F}) = \frac{1-\frac{2}{4}}{1-\frac{2}{4}} = \frac{4}{4} = 1$ (x2+7)x d, (2x2-2) - (2x2-2)d (x2+7) (x2+7)2 $= \frac{(x^2+7)(6x)-(3x^2-2)(2x)}{(x^2+7)^2}$ $= \frac{6x^3+42x-6x^3+4x}{(x^2+7)^2}$ $= \frac{46x}{(x^2+7)^2}$ 2 MA IHEMA IICS 2M, 2A, 2T, Total no. 1) arrangement = 11! = 4989600 12

No. of arrangement when vowels occupy techy MTHM TCS AEAI 81 × 4/ = 120960 2 nd October 1869 = 160 0 + 200 years + 6.8 years + leifed from 1.1. 1869 to 1 No. 8) odd days in 1600 years = 0 200 year = 2x5=10 = 7x1-13 1 68 years - 17 leapyear + 51 ording = 17x2+51x1 $= 7 \times 12 + 1 = 100001$ No. of odd days = 3+1=4 Period from 1.1.1869 to 2. 10 1869 Jan Feb M A may I July Pay get Och 31+28-+31+30+31+30+31+31+30+2 =275 = 39x7+2 -total odd days = 472 =6 No. "Faturday / Section D) 500(1+学の), 500(1+学の)2, ---- 500(17/2) It is G.P. with a = 500 (4), 2=4. Amount after loyears = To = ar9 = 500/11/(4) = 500 (1) y/o.

C.L.	w,	10	4:= 11-9	fin	814,2
32.5-36.5	345	15	-2	-3.	60
36.5-40.5		17	-1	-17	17
40.5-44.5		21	0	0	0
44.5-48.5	46.5	22		22	22
4815-52g	50.5	25	, 2	570	100
		100		25	199

Mean= a+ Eliuxxh

= 425 + 4x21

= 43.5

= 4x J.99-0.6625 = 4x J.9975

= 4x 1.38

= 5.55

2

9.

l

2

5

Project A-s Present volue of Cash outflow = Intal 1= 12 = 0.12 Orwent Value of cash inflows for Ist, and and 3rd year \$ 1,00,00, \$ 2,70,000 and £ 1,90,000. -. NPV D Project A = 100000 + 270000 + 190000 - 350000 = [89285.70 + 215211.00 135231.35] - 35000 439828-350000 Present Value of Cash Outflow = # 3,5000 Present value of cash bifloro = £ 270000 per gear NIV of Project B = \(\frac{270000}{1.12} + \frac{270000}{(1.12)2} \right) -350000 = (241571,40 + 215311,00) -35000 = 456382140 -350000 = \$ 1,006 = I 1,06,382.40 NIVI) project B > NPV) A So, company will invest in broject &

(i) Stope of
$$CD = \frac{-4-0}{-3+5} = \frac{-4}{2} = -2$$

(ii) $CS = 0$ My AB = $\frac{5-8}{12-6} = \frac{-3}{6} = -\frac{1}{2}$
 $y-8 = -\frac{1}{2}(n-6)$
 $2(y-8) = -(x-6)$
 $2(y-8) = -(x-6)$
 $2y-16 = -n+6$
 $2(y-8) = -(x-6)$
 $2(y-8) = -(x-$

Class - X lipplied nathy marking scheme December Exams 2024-25

Note: - Any other relevant annour not given here in but done by students are suitably awarded

5-No.	Value Points / Key Points		Valle	Poly
	() (100/01/0)2		1_	1
			1	1
18 U			1	1
	a) 9) 46		1	18
27	5) 17		1	1
· .	l) 58		1	1
	c) 45		11	,
443	d) - 1 and 1		1	1
	a) 7		1	l
	6) 1.2		1 1	-1
) 45389		1	
	() Both conclusions I and I follows		1,1	(
0.8	1) 1.75			L
1) 13	3		î
) 3	2		1
6	0,4);6		1	1
, 6) 6		1 1	1
	The same section is a section of the same sect		1 1	· C
1 5	platybustic '			1
3	c). A is true Ris false	Turk		100
	b) both A and R are true and Ris not			1
2	the correct cuflanation of A.			1

377 R Decimal Part Product Rhay 0.5 X2 1.00 0 337.75=(101010001.11) U= 52,4,48,10,123 , A= 543 , B= 545,63 A' = 8,8,10,123 , B' = 82,8,123 (1) A'UB' = {2, 6, 8, 10, 12} (n) B-A= 8 86,103 R= 829: 83y-x=0, x,y EAS (94) (1) R = (8,1), (6,2), (9,3) (12,4)? (Ti) Domain & R = \$3,6,9,123 Range DR = {1,2,3,43 for = SKx2, x>1 lim y = by kn2 = f(1) = k = [K=4] Section-C f(n) = x2-81 20 Df = R- 893 y= Q-2)(1+9) => n= y-9 Here x +9 => 4-9+ =) Romyi = K - [10]

(n2-6) × g/ (5n2+7) - (5n3+7)xg/ (n2-6) (x2=6)2 = (x2-6)(15x2) - (5x3+7)(2x) 15x4-90x2-10x4-14x 1/2 $=\frac{5n^{4}-90n^{2}-14n}{(x^{2}-6)^{2}}$ ALGEBRA No. of arrangements = 76 = 726152413 = 25020 13 No. 1) arrangements when vowels occur togher [AEA] LGER = 5! x3! = 5x4x3x2x2x2 12 = 360 Rete (2) North unit Lmouts 27750 4.75 0-60 = 50 51-150= 100 650,00 6.50 157-300 = 150 7.35 1102,50 1520,00 301-500 = 200 7.65 19477,50 5-1-2950 = 2450 7.95 29997,50 Energy duty = \$0.40 per unit = to,40 x2950 = I180 Electristy Bill = Fined charge + Energy charges + Energy? 400 + 22997.50 +1180 = \$ 24577.50

15 August 1947 = 1600 years + 300 years + 46 years + beyod from 1. 1847 15.8.1947 No Jord days in 1600 years = 0 No. I odd days in sorgeans = 3x5= 15days = 7x2+1 = 1 odd dag A period of 46 years = 11 leaf years + 35 non-leap years = 11x2+31x1= 57 = 8xx+1 = I odd day. 10.0) odd days in period of 1.1. 1942 to 15.8.1947 Jan + Peb + m + Ap + May 4 Ju + July + A. 31 + 28+ 31 + 30 + 31 + 30 + 31+15 = 227 days = 32x7+3 = 3 old days Total odd days = 0+1+1+3=5 odd days Day - Friday. Section-D fide2 di=ni-A fide fi Xi 2 10 4 12 10 13 14 15 13 30 49 mean= A+ Ebid/ = 12+ 12 = 12.431 S.O = J Elidiz - (Elidi) =

3

$$SD = \int \frac{11}{30} - \frac{13}{30}^{2}$$

$$= \int 1.633 - 6.433^{2}$$

$$= \int 1.633 - 0.187 = \int 1.446 = 1.208. \quad 1\frac{1}{2}$$

$$= \int 1.633 - 0.187 = \int 1.446 = 1.208. \quad 1\frac{1}{2}$$

$$= \int 1.633 - 0.187 = \int 1.446 = 1.208. \quad 1\frac{1}{2}$$

$$= \int 1.433 - 12 = 0.37$$

$$= \frac{12.433 - 12}{1.203} = 0.37$$

$$= \frac{12.433}{1.203} = \frac{12.203}{1.203} = 0.37$$

$$= \frac{12.43}{1.203} = \frac{12.203}{1.203} = 0.37$$

$$= \frac{12.23}{1.203} = 0.37$$

$$= \frac{12.43}{1.203} = 0.37$$

$$= \frac{12.43}{1.203} = 0.37$$

$$= \frac{12.43}{1.203} = 0.37$$

$$= \frac{14.13}{1.203} = 0.37$$

T