

OSDAV Public School, Kaithal December Exam, 2024 Class: XII Subject: Chemistry (043)

SET-A

Time: 3Hours

General Instructions:-

- I. All questions are compulsory.
- II. There are 33 questions in this question paper with internal choice.
- III. SECTION A consists of 16 multiple choice questions carrying 1 mark each.
- IV. SECTION B consists of 5 short answer questions carrying 2 marks each.
- V. SECTION C consists of 7 short answer questions carrying 3 marks each.
- VI. SECTION D consists of 2 case-based questions carrying 4 marks each.
- VII. SECTION E consists of 3 long answer questions carrying 5 marks each.
- VIII. Use of lag tables and calculators is not allowed.

Q.No	Questions					
•						
1	SECTION A	1				
	a Zn Container b MnO					
2	$a.211$ Container. D.MinO ₂ C.Graphine rou. $u.N\Pi 4Ci$	1				
2	a 2 4 DNP b lo and NaOH c Febling solution d Ag NaHSO					
3	The deficiency of which of the vitamin causes Pickets?	1				
0	a A b B c C d D	•				
4	Which of the following is most reactive towards nucleophilic addition reactions?	1				
•	a.HCHO b. CH_3CHO c. CH_3COCH_3 d. $CH_3COCH_2CH_3$	•				
5	Auto oxidation of chloroform in air and sunlight produces a poisonous gas:	1				
	a.Tear gas. b. Phosgene gas. c. Mustard gas. d.Chlorine gas					
6	Which property of transition metals enable them to behave as catalyst?	1				
	a.High melting point. b.High ionisation enthalpy					
	c.Alloy formation. d.Variable oxidation state					
7	The slope in the plot of [R] vs time for a zero order reaction is :	1				
	a. +k/2.303 bk ck/2.303 d. +k					
8	Amides can be converted into amines by the reaction named:					
_	a.Ammonolysis b.Hoffmann degradation c.Carbylamine d. Diazotisation					
9	Match the following:	1				
	(i) Salicylaldehyde A. Kolbc's reaction					
	(ii) o-nitrophenol B. Williamson's					
	(iii) Salicylic acid C. Intramolecular					
	(<i>iv</i>) <i>p</i> -nitrophenol D. Reimer-Tiemann					
	reaction (v) Unsymmetrical					
	ethers					
	Which of the following is the best matched option? (a) i-A, ii-C, iii-D, iv-B					
	(b) i-D, v-B, iii-C, iv-A (c) i-D ii-C iii A \sim P					
	(d) i-B, ii-C, iii-A, iv-D					
10	The unit of rate constant depend upon the :	1				
	a. Molecularity of reaction b. Activation Energy of reaction					
	c. Order of reaction. d. Temperature of the reaction					
11	When diethyl ether is heated with excess HI, it produces:	1				
	a. Ethanol. b. lodoform. c. Methyl iodide. d. Ethyl iodide					

M.M. 70

12	Which one of the following metals of	3d series has the lowest melting point?	1				
10	a. Fe. b.Mn.	c.Zn d. Cu					
13	Given below are two statements labelled as Assertion(A) and Reason(R)						
	Select the most appropriate answer from the options given below:						
	a. Both A and R are true and R is corr	ect explanation of A.					
	D. Bollin A and R are true but R is not (correct explanation of A.					
	d A is false but R is true						
	Δ sertion (Δ): o- nitrophenol is a weaker acid than n-nitrophenol						
	Reason(R): Intra molecular hydrogen bonding makes ortho isomer weaker than						
	para isomer						
14	Assertion (A): Benzoic acid does not	undergo Friedel craft reaction.	1				
	Reason(R): The carboxyl group is ac	tivating and undergo electrophilic substitution					
	reactions.						
15	Assertion (A): All enzymes are made	up of proteins and all proteins have three	1				
	dimensional structure.						
16	Reason(R): Secondary structure of p	roteins is a sequence of amino acids.	1				
10	Assertion (A). Electrolysis of aqueou	s solution of Naci gives chionne gas at anode	I				
	Beason(R) : Formation of O2 days at a	node requires over potential					
	SECTION- B	node requires over potential.					
17	The following data were obtained for	the reaction:					
	2N0+ 02> 2N02						
	Contraction of Contra	an anti-					
	Exp. [NO]/M [O ₂]/1	M Initial rate of formation					
		of NO ₂ /M min ⁻¹					
		Or I to give many					
	1 0.3 0.2	7.2×10^{-2}					
	2 0.1 0.1	6.0×10^{-3}					
	3 0.3 0.4	2.88×10^{-1}					
	4 0.4 0.1	2.40×10^{-2}					
	(a) Find the order of reaction with rea	spect to NO and O ₂ .	1				
	(b) Write the rate law and overall ord	er of reaction.	1				
18	A 0.01 m aqueous solution of AICl ₃ f	reezes at -0.068°C. Calculate the percentage of	1+1				
	dissociation. Given that Kf for water-	= 1.86 KKg/mol.					
19	What happens when:		1				
	(a) n- Butyl Chloride is treated with a	cohol KOH.	1				
00	(b) 2,4,6 I rinitrochlorobenzene is sub	pjected to hydrolysis.	4				
20	(a) Why is pKa of CICH2CUUH lower	than the pka value of CH3CU00H?					
	(b) while the chemical equation for F		1				
	UR I Convert the following:(a) Benzone inte m-nitrebenzaldebyde						
	(b) Bromobenzene to benzoic acid						
21	Differentiate between:						
	(i) Peptide linkage and Glycosidic linkage						
	(ii) Nucleoside and Nucleotide.		1				
	5	ECTION- C					
22	(a) [Fe(CN)6]4- and [Fe(H2O)6]2+ ar	e of different colours in dilute solutions. Why?	1				
	(b) Discuss briefly giving example in each case the role of coordination compounds						

	in : (i) Analytical chemistry. (ii) Biological systems	1+1				
23	Write down cell reaction and calculate the emf of the following cell at 298 K: $\Delta I(s)/\Delta I^{3+}(0.001M) / (Ni^{2+}(0.1M)/Ni(s))$	1				
	Given : $E^AI3 + /AI = -1.66V$. $E^Ni2 + /Ni = -0.25V$. Log(10)=1	2				
24	How can you convert the following: (a) Phenol to o-Hydroxybenzaldehyde (b) Propanamide to Ethanamine(c) Aniline to Phenol					
25	Write the chemical reactions for :	1+1+				
	(a)Cross aldol condensation (b) Cannizzaro Reaction (c) Clemmensen Reduction					
26	Give reasons for the following observations:					
	(a) Amino acids behave like salts.	1				
	(b) Pentaacetate of glucose does not react with Hydroxyl amine.	1				
	(c) The two strands of DNA are complementary to each other.	1				
27	Account for the following:					
	(a) Benzyl chloride is highly reactive towards SN1 reaction.	1				
	(b) (+_) Butan-2-oi is optically inactive, though contains a chiral carbon.					
20	(c) Uniorotorm is stored in dark colored bottles.	 2				
20	that required for its 25% completion at 208K . Calculate activation approx	3				
	1 and required for its 25% completion at 500K. Calculate activation energy.					
	SECTION -D					
29	The following questions are case -based questions. Each question carries 4					
	(1+1+2) marks each. Read the passage carefully and answer the questions that					
	follows.					
	In coordination compounds, metals show two types of linkages, primary and					
	secondary. Primary valencies are ionisable and are satisfied by negatively charged					
	ions. Secondary valencies are non ionisable and are satisfied by neutral or negative					
	ions having lone pair of electrons. Primary valencies are no directional while					
	secondary valencies decide the shape of the complex.					
	Answer the following questions					
	(i) If $PtCl_2$. 2NH ₃ does not react with AgNO ₃ what will be its formula?					
	(ii) What is secondary valency of $[Co(en)_3]^{3/2}$	1				
	(iii) Write the hybridization and magnetic behaviour of [Ni(CN)4] ^{2*}					
20	Debul act up on experiment to find registerion of equation (CL colution for different					
30	concontrations at 208 K using a conductivity coll connected to a wheatstone bridge					
	with the a c power in the audio frequency range 550 to 5000 cycles per second					
	Once the resistance was calculated from null point he also calculated the					
	conductivity and molar conductivity and recorded his readings in tabular form					
	S.No. Cone. (M) κ (S cm ⁻¹) Λ (S cm ² mol ⁻¹)					
	1. 1.00 111.3×10^{-3} 111.3					
	2. 0.10 12.9×10^{-3} 129.0					
	3. 0.01 1.41×10^{-3} 141.0					
	Answer the following questioner					
	(a) Why does conductivity decrease with dilution?	1				
	(b) If Λ° KCl is 150.0 S cm ² mol ⁻¹ calculate the					
	degree of dissociation of 0.01 M KCL	1				
	(c) If Rahul had used HCl instead of KCl then would	•				
	you expect the A values to be more or less than					
	those per KCl for a given concentration. Justify.	2				
	SECTION-E					

31	 (a) Why is chemistry of actinoids is complicated as compared to lanthanoids? (b) Complete the following reaction and justify that it is a disproportionation reaction. 3 MnO₄ + 4 H⁺>				
	(c) The given graph shows the trends in the melting points of transition metals. Explain the reason why Cr has highest melting point and manganese (Mn) a lower melting point.	1			
	(i) KI. (ii) H2S	1+1			
32	(a) On mixing Liquid X and Liquid Y, Volume of the resulting solution decreases. What type of deviation from Raoult's Law is shown by the resulting solution? What change in temperature would you observe after mixing liquids X and Y?	2			
	benzene reduced the vapour pressure to 90%, calculate the mass of X dissolved in the solution.	2			
	(c) How is solubility of gases in water related with their Henry's constants at the same pressure and temperature? OR	1			
	(a)What type of deviation from Raoult's Law is expected when ethyl alcohol and water are mixed with each other? What change in net volume of the mixture is expected? Graphically represent the deviation.	½+1/ 2+1			
	of carbon disulphide assuming 84 % dimerisation of the acid. The boiling point of Cas2 is 47.2° C. [Given Kb forCS2 = 2.3 KKg/mol]	3			
33	 (a)An aromatic compound 'A' on heating with Br₂ and KOH forms a compound 'B' of molecular formula C₆H₇N which on reacting with CHCl₃ and alcoholic KOH produces a foul smelling compound 'C'. Write the structures and IUPAC names of compounds 'A' 'B' and 'C'. (b)Arrange the following in the decreasing order of pK_b giving reason (i)Aniline, p-nitro aniline, and p-toluidine 				
	(ii) $C_2H_5NH_2$, $(C_2H_5)_2NH$ and $(C_2H_5)_3N$ in aqueous medium. OR (a)An aromatic compound 'A' on treatment with NH ₃ followed by heating forms	1			
	compound B which on heating with Br2 and KUH forms compound C having	1+1+			

molecular formula C_6H_7N . Give the structures and IUPAC names of 'A' ,'B' and 'C'	1
(b) Distinguish between the following pairs by suitable chemical test:	
(i)Aniline and ethyl amine (ii) Aniline and Benzyl amine	
	1+1

OSDAV Public School, Kaithal Marking Scheme December Exams (2024-25) Subject: CHEMISTRY(043) Class:XII Set-A

1	C	
2	В	1
3	D	1
4	A	1
5	В	
		1
6	D	1
7	В	1
8.	В	1
9	C	1
10	C	1
11	D	1
12	C	1
13	A	
		1
14		1
	C	
		-
15	C	1
		1
	A	I
16	A	
10	Order wrt NO is 1 and order wrt O2 is 2	1
17	Bate law: Pate $-K[NO][O2]2$ Overall order of reaction is 3	1
18		1
10	$\Delta T_f = 0.068, K_f = 1.86$	
	Sustituting the values	
	$\Delta 1_f = i K_f m$ $0.068 = i \times 1.86 \times 0.01$	1
	<i>i</i> = 3.65	
	degree of dissociation = α i-1	
	$\alpha = \frac{1}{n-1}$	1
	$\alpha = 0.883$	
	in water.	
19	(a) But-1-ene will be formed.	
00	(D) 2,4,6 trinitrophenol Will be formed.	
20	(a) CICH2COUH IS STRONGER ACID due to -I effect of CI, than CH3COUH.	
	(b) CH3COUH +CIZ(ReaP)> CICH2COUH.	I

Edit with WPS Office

25	(a) Cannizzaro Reaction Examples $2 \int_{C_{H_{H_{0}}}}^{C_{H_{1}}} H_{H_{0}}^{H_{0}} \int_{E_{H_{1}}}^{H_{0}} H_{H_{1}}^{H_{1}} \int_{E_{H_{1}}}^{H_{0}} \int_{E_$	1
	(b) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1
26	 (a) Amino acids behave like salts rather than simple amines or carboxylic acids. This behavior is due to the presence of both acidic and basic groups in the same molecule. In aqueous solution, the carboxyl group can lose a proton, an amino group can accept a proton, giving rise to a dipolar ion known as a zwitter ion. (b) Due to absence of free aldehyde group it does not react with hydroxyl group. (c) Cytosine forms hydrogen bond with guanine, while adenine forms hydrogen bond with thymine. As a result, the two strands are complementary to each other. 	1 1 1
27	 (a) Benzyl carbocation is highly stable due to resonance. (b) It is racemic mixture. It consists of equal amount of dextrorotatory and leavorotatory isomers. (c) In the presence of suplight it convert into poisonous gas phoseene. 	1
28	For 10% completion of the reaction, we have $k(298) = \frac{2.303}{t} \log \frac{100}{90}$ For 25% completion of the reaction, we have $k(308) = \frac{2.303}{t} \log \frac{100}{75}$ $k(308) = \frac{2.303}{t} \log \frac{100}{75}$	1
	$\frac{k(298)}{k(298)} = \frac{\frac{2.303}{1.00} \frac{100}{90}}{\frac{2.73}{100} \frac{100}{90}} = 2.73$ But, $\log \frac{k(308)}{k(298)} = \frac{E_a}{2.303R[\frac{T^2 - T}{TT^2}]}$ $\log 2.73 = \frac{E_a}{2.303R[\frac{T^2 - T}{TT^2}]}$	1
	2.303 × 8.314 308 × 298 E _a = 76623 J/mol = 76.623 kJ/mol	1
29	(i) [Pt(NH3)2Cl2] (ii) 6 (iii) dsp2, square planar and diamagnetic.	1 1

		1
	Ni-atom 1411111111111111111111111111111111111	1
	$\frac{ N (CN)_4 ^2}{ 1 ^2} = \frac{1}{1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+$	
		1
	Souare nlanar geometry	
30	(a) On dilution no. Of ions per unit volume decreases.	1
	(c) Molar conductivity will be more.	1
	Reason : In HCl , H+ ion has smaller size than K+ , smaller ion has more mobility in	1
	solution so more will be molar conductivity.	1
31	(a)Actinoids are radioactive and shows more no. Of oxidation states.	1
	(b) 3 MnO4 2- + 4H+> 2 MnO2 + MnO4- +2H2O In this reaction Mn undergo oxidation as well as reduction. Therefore it is	
	disproportionation reaction.	
	(c) Crinas nignest number of unpaired electrons, strong interatomic metal bonding, hence no delocalisation of electrons	1
	In Mn electrons are more tightly held by the nucleus, the electrons are not available	
	for bonding resulting weaker metallic bonding in manganese compared to	
	chromium.	1
	(d) $10 \operatorname{Cr}_2 \operatorname{O}_7^2 + 61^2 + 14 \operatorname{H}^2 \equiv 2 \operatorname{Cr}^2 + 3 \operatorname{I}_2 + 7 \operatorname{H}_2 \operatorname{O}^2$	
	Thus, the balanced equation in acidic solution is: $3H2S + 2Cr207^{2} + 12H \rightarrow 3S + 4Cr^{3} + 20H20$ (ii)	1
32	(a) -ve deviation.	1
	Temperature will increase because heat energy will be released.	1
	Relative lowering of vapour pressure:	1
	$\frac{1}{P_s} = \frac{n_b}{n_A}$	
	$\frac{P^{0} - 0.9 P^{0}}{0.9 P^{0}} = \frac{W_{B}}{50} \times \frac{78}{78}$	1
	$\rightarrow W_{\rm B} = \frac{0.1}{0.9} \times 50$	
	$=\frac{50}{9}$	
	(b) $= 5.5 \text{ g}$	
	(c) Solubility of gas is inversely proportional to Henry constant.	1
	(a) +Ve deviation. ΔV mix +ve.	2
	(b) Degree of association= n(1-i)/ (n-1) 0.84-2(i-1)/2-1 i= 0.58	1
	$\Delta Tb = Tb^{\circ} = iX Kbx w^{2}/M^{2} x 1000/w^{1}$	
	Tbs- 47.2°C= 0.58x2.3×0.61×1000/ 122×50= 0.13	1
	Tbs= 47.3°C	
		1

33	(a) A= Benzamide, B= Aniline, C= Phenylisocyanide.	3		
	(b)(i) p-Nitrogniline> Aniline > p-tiluidine.			
	(ii) C2H5NH2> (C2H5)3N> (C2H5)2NH	1		
	OR			
	(a) A= Benzoic acid. B= Benzamide C= Aniline.	3		
	(b) (i) Nitrous acid test: Ethyl amine give N2 and ethyl alcohol will be formed.			
	Aniline will form diazonium salt.	1		
	(ii) Isocyanide test: Aniline give foul smell with chloroform and NaOH.			
	N- Metylaniline will not give this smell.	1		

OSDAV Public School, Kaithal December Exam, 2024 Class: XII Subject: Chemistry (043)

SET-B

Time: 3Hours

General Instructions:-

- I. All questions are compulsory.
- II. There are 33 questions in this question paper with internal choice.
- III. SECTION A consists of 16 multiple choice questions carrying 1 mark each.
- IV. SECTION B consists of 5 short answer questions carrying 2 marks each.
- V. SECTION C consists of 7 short answer questions carrying 3 marks each.
- VI. SECTION D consists of 2 case-based questions carrying 4 marks each.
- VII. SECTION E consists of 3 long answer questions carrying 5 marks each.
- VIII. Use of lag tables and calculators is not allowed.

Q.No	Questions	Marks		
•				
	SECTION A			
1	Which of the following was used in Apollo space program?	1		
	a.Mercury cell b.Daniel cell c.Dry cell d. H ₂ -O ₂ Fuel cell			
2	Acetyl chloride is treated with H ₂ in presence of Pd-BaSO4. The product is:	1		
	a.CH ₃ CHO b.C ₂ H ₅ OH c.CH ₃ COOH d. CH ₃ COCH ₃	-		
3	The deficiency of which of the vitamin causes pernicious anaemia?	1		
	a. B ₁ b. B ₂ c. B ₆ d. B ₁₂	-		
4	Which of the following is most reactive towards nucleophilic addition reactions?	1		
_	$a.C_2H_5CHO$ $b.CH_3CHO$ $c.CH_3COCH_3$ $d.C_6H_5COC_6H_5$			
5	Which of the following is chiral in nature?	1		
6	a.2-Bromobutane D. I-Bromobutane C. 2-Bromopropane d.2-Bromopropan-2-01	1		
O	Which of the following is stonest oxidising agent?			
7	a.Zn D. SC C. Ur D. Nin A first order reaction is 50 % completed in 206 c. How much time would it take for	1		
/	A first order reaction is 50 % completed in 206 S. How much time would it take for			
	100% completion?			
8	a. 412.5 D. 105.5 C. Infinite U. 010.5 Which of the following reagonts would not be a good choice for reducing an any	1		
0	Nitro compound to an amine	•		
	a H2(excess) /Pt b LiAlH4 in ether c Fe and HCl d Sn and HCl			
9	Match the following:	1		
	II THE REAL PROPERTY OF THE RE			
	(i) Salicylaldehyde A. Kolbc's reaction (ii) o-nitrophenol B. Williamson*s			
	synthesis			
	Hydrogen bonding			
	(iv) p-nitrophenol D. Reimer-Tiemann - reaction			
	(v) Unsymmetrical			
	Which of the following is the best matched option?			
	(a) i-A, ii-C, iii-D, iv-B (b) i-D \approx B iii-C is A			
	(c) i-D, ii-C, iii-A, v-B			
10	(d) i-B, ii-C, iii-A, iv-D	1		
	In the presence of a catalyst, the heat evolved of absorbed during the reaction			
11	a. Increases. D. decreases. C. May increase of decrease d. remains unchanged Which of the following is most acidio?			
	which of the following is most acluic?			

M.M. 70

	a. Benzyl a	lchol b. (Cyclohexanol.	c. Phenol	d. m-Chlorophenol	1	
12	Which one	of the following	metals ions	of 3d series is diam	agnetic ?	1	
	a. Fe ^o b.Mn ² c.Zn ² d. Cu ²						
13	Given below are two statements labelled as Assertion(A) and Reason(R)						
	Select the most appropriate answer from the options given below: a. Both Λ and \mathbf{P} are true and \mathbf{P} is correct explanation of Λ						
	h Both A a	nd R are true bu	t R is not corr	explanation of A.	Δ		
	c. A is true	but R is false.			٦.		
	d. A is false	e but R is true					
	Assertion	(A): Like bromina	ation of benze	ene, bromination of	phenol is also carried		
	out in the presence of Lewis acid.						
	Reason(R)	: Lewis acid pola	aries the brom	nine molecule.			
14	Assertion	(A): Compounds	containing -0	CHO group are easily	y oxidised to	1	
	correspond	ding carboxylic a	icids.		. h tua atua a ut'th		
		: The carboxylic	acids can be	reduced to alcohols	s by treatment with		
15	Δssertion ((A). Vitamin D ca	an he stored i	n our body		1	
	Reason(R)	: Vitamin D is fa	t soluble vitar	nin.		•	
16	Assertion	(A): Copper sulp	hate can be s	tored in zinc vessel	•	1	
	Reason(R)	Zinc is more re	active than co	opper.			
		SECTI	ON-B				
17	The followi	ing data were ob	ptained for the	e reaction:			
	2N0+ 02	> 2NU2					
	Evn	INO1/M	10.1/M	Initial rate of	of formation		
	Lap.	fuelling	[02]/ m	ENIO /	I min-1		
	and the second of			of NO ₂ /1	vi mm		
	1	0.3	0.2	7.2 ×	10 ⁻²		
	2	0.1	0.1	6.0 ×	10 ⁻³		
	3	0.3	0.4	2.88 >	< 10 ⁻¹		
	4	0.4	0.1	2 40 >	(10-2		
	-	367.8 X	011	2.10 /	10		
	(a) Find the	e order of reaction	on with respe	ct to NO and O ₂ .			
10	(b) Write th	he rate law and c	overall order o	reaction.	of protoin The		
10	200 CIT 01	an aqueous son	ution of a pro	K is found to be 2 F	57 X 10 ⁻³ bar Calculate	2	
	the molar r	nass of the prot	ein.				
19	Arrange the	e compounds of	each set in ir	ncreasing order of re	eactivity towards SN ²		
	displaceme	ent:		•	,		
	(a) 2- Bromo-2- methylbutane , 1- Bromopentane, 2-Bromopentane						
	(b) 1-Bromo-3-methylbutane, 2-Bromo-2-methylbutane, 2-Bromo-3-methylbutane.						
20	Distiguish	between Fibrous	s proteins and	I Globular proteins.		2	
21	(a) Why is [pka of CICH2CC	OH lower tha	n the pKa value of (H3CUUUH?	1	
	(b) Write the chemical equation for Hell Volhard-Zelinsky reaction.				1		
				OR			
	Convert the	e following. (a) E	Benzene into r	m-nitrobenzaldehyd	e. (b)Bromobenzene to	1+1	
	penzoic ac	I G .					

	SECTION- C				
22	The time required for 10% completion of a first order reaction at 298 K is equal to	3			
	that required for its 25% completion at 308K . Calculate activation energy.				
	Log3=0.4/ Log4=0.60 Log9= 0.95 Log 10= 1 Log(2.72)= 0.436 R=8.314 JK mol				
23	Account for the following:	1			
	(a) Benzyl chloride is highly reactive towards SN ¹ reaction.				
		1			
	(b) (+_) Butan-2-ol is optically inactive, though contains a chiral carbon.				
	(c) Chloroform is stored in dark colored bottle.	1			
24	How can you convert the following:(a) Phenol to Salicylic Acid	-			
	(b) 1-Chloropropane to Butan-1amine. (c) Aniline to Benzene	1+1+1			
25	Write the chemical reactions for :	1+1+1			
	(a) Etard Reaction (b) Stephen (c) Gattermann Koch				
26	Explain in detail watson crick model of DNA.	3			
27	Write down cell reaction and calculate the emf of the following cell at 298 K:				
		1			
	AI(s)/AI~(0.001M) // NI [~] (0.1M)/NI(s)	1			
	Given : E°Al3+/Al = -1.66V , E°Ni2+/Ni= -0.25 V. Log(10)=1	1			
28	a) $[Fe(CN)_6]^{4-}$ and $[Fe(H2O)_6]^{2+}$ are of different colours in dilute solutions. Why?	1			
	(b) Discuss briefly giving example in each case the role of coordination compounds	1+1			
	in : (i) Analytical chemistry. (ii) Biological systems				
	SECTION -D				
29	The following questions are case -based questions.Read the passage carefully				
	and answer the questions that follows.				
	In coordination compounds, metals show two types of linkages, primary and				
	secondary. Primary valencies are ionisable and are satisfied by negatively charged				
	ions. Secondary valencies are non ionisable and are satisfied by neutral or negative				
	ions having lone pair of electrons. Primary valencies are no directional while				
	secondary valencies decide the shape of the complex.				
	Answer the following questions	1			
	(i) If $F(G)_2$.2ND3 does not react with AgnO3 what will be its formula? (ii) What is cocondary valancy of $[Co(cn)_2]^{3+2}$	1			
	(ii) Write the hybridization and magnetic behaviour of [Ni/(CN), ¹²⁻	2			
30	Rabul set up an experiment to find resistance of aqueous KCl solution for different	ک			
	concentrations at 298 K using a conductivity cell connected to a wheatstone bridge				
	with the a c power in the audio frequency range 550 to 5000 cycles per second				
	Once the resistance was calculated from null point he also calculated the				
	conductivity and molar conductivity and recorded his readings in tabular form.				
L					

	S.No.	Cone. (M)	к (S cm ⁻¹)	$\Lambda_{\rm m} (\rm S cm^2 mol^{-1})$		
	1.	1.00	111.3×10^{-3}	111.3		
	2.	0.10	12.9×10^{-3}	129.0		
	3.	0.01	1.41×10^{-3}	141.0		
	Answer	the followin	ng questions:			
	(a) Wh	ny does cond	uctivity decrea	se with dilution?		1
	(b) If .	A°m KCl is 1	50.0 S cm ² m	ol ⁻¹ , calculate the		•
	deg	gree of disso	ciation of 0.01	M KCI.		1
	(c) If F	Rahul had us	ed HCl instead	of KCl then would		
	you	a expect the	A _m values to be	e more or less than		
	the	ose per KUII	or a given cond	centration. Justify.		2
01			SECTION	-E		1
31	(a) Why is	chemistry of a	ictinoids is comp	licated as compared to	lanthanoids?	1
	(D) Compi		ig reaction and ju	istiny that it is a disprop	ortionation	1
	$3 \text{ Mn} \Omega_{4}^{2}$	⊧ 4 H ⁺	> +	+ 2H₂O		
	(c) Th	e given gr	aph shows th	trends in the		
	me	Iting points	of transition	metals. Explain		1
	the	manganes	(Mn) a low	est melting point		
	4	, mang	10	or morning point.		
	mot know	v.	and methods			
		_ /	Re	and the second second		
	1	Ta	/			
	3-	In M	lo Os	We annound		
	×	110	100	11		
	110	Hf /	TC			
	M.P	zr/ v	r Rh	Pt		
	2-	T	Fe C	Ral		
	provinsity of	un obuster.		NIN		
	and straight		Mn	Hou		
			attimuters and an	AğAu		
		At	tomic number			
	0.31(d) W	/rite Balanced	lonic equations w	hen Acidified K2Cr2O7r	eact with	2
	(i) KI.		(ii) H ₂ S			-
32	(a) On mix	king Liquid X ar	nd Liquid Y, Volun	ne of the resulting solut	ion decreases.	2
	What type	of deviation fr	om Raoult's Law	is shown by the resultin	g solution? What	
	change in	temperature w	ould you observe	after mixing liquids X a	ind Y?	
	(b) A non	volatile solute	X (molar mass=5	0 g/mol) when dissolve	d in 78 g of	2
	benzene r	educed the vap	our pressure to s	90%, calculate the mass	of X dissolved in	
		20. S solubility of a	acos in wator rola	tod with their Henry's or	onstants at the	1
	same pres	ssure and temr	oerature? OR	ted with their rienry's co		
	(a)What ty	pe of deviatior	n from Raoult's La	aw is expected when eth	nyl alcohol and	1⁄2+1/2
	water are	mixed with eac	ch other? What ch	ange in net volume of t	he mixture is	+1
	expected?	? Graphically re	present the devia	tion.		
	(b)Calcula	ate the boiling p	point of a solution	containing 0.61 g of be	enzoic acid in 50 g	
	ot carbon	disulphide ass	uming 84 % dime	risation of the acid. The	boiling point of	3
	US2 IS 47.		en KD TOFUS ₂ = $2.$	s kkg/moij		

33	(a)An aromatic compound 'A' on heating with Br ₂ and KOH forms a compound 'B' of molecular formula C ₆ H ₇ N which on reacting with CHCl ₃ and alcoholic KOH produces a foul smelling compound 'C'. Write the structures and IUPAC names of compounds 'A' 'B' and 'C'.	1+1+1
	(b)Arrange the following in the decreasing order of pK_b giving reason	
	(i)Aniline, p-nitro aniline, and p-toluidine	1
	(ii) $C_2H_5NH_2$, (C_2H_5) ₂ NH and (C_2H_5) ₃ N in aqueous medium.	1
	OR	
	(a)An aromatic compound 'A' on treatment with NH ₃ followed by heating forms compound 'B' which on heating with Br ₂ and KOH forms compound 'C' having molecular formula C ₆ H ₇ N. Give the structures and IUPAC names of 'A' ,'B' and 'C'	1+1+1
	(b) Distinguish between the following pairs by suitable chemical test: (i)Aniline and ethyl amine (ii) Aniline and N-Methylaniline.	1+1

OSDAV Public School, Kaithal Marking Scheme December Exams (2024-25) Subject: CHEMISTRY(043) Class:XII Set-B

1	D	
2	Α	1
3	D	1
4	В	1
5	A	
		1
6	D	1
7	C	1
8.	<u>A</u>	1
9	C	1
10	D	1
11		1
10		1
12		
13	U	1
14	В	1
15	A	1
	D	1
16		-
1/	Order wrt NO is 1 and order wrt O2 is 2.	1
10	Rate law: Rate = K[NU][U2]2. Uverall order of reaction is 3	l
18	$\pi = \frac{W_B RT}{W_B RT}$	1
	M _B V	I
	$M_{B} = \frac{W_{B}RT}{T}$	
	πV	
	$=\frac{1.26 g \times 0.083 L bar K^{-1} mol^{-1} \times 300 K}{2.57 \times 10^{-3} horr \times 0.2 L}$	1
	2.5) ~ 10 - bab ~ 0.21.	
	= 61,039 g mol ⁻¹	
19	(a) 2-Bromo-2-methylbutane<2-Bromobutane<1-Bromobutane.	1
	(D) 2-Bromo-2-methylbutane<2-Bromo-3-methylbutane<1-Bromo-3-methylbutane	1
	Less streic minutance more reactivity towards SNZ.	1
21	(a) $OOPZOOOP$ is stronger actu due to -i effect of OF, that $OPZOOOP$. (b) $OPZOOOPZOOOPZOOOPZOOOPZOOOPZOOOPZOOOPZ$	1
	(0) 01000011 + 012(Rear)> 0101200011.	1
		1

	Sugar-Phosphate backbone (two; outside) Nitrogenous base-pairs (inside) A + T G + C Held together by hydrogen bonds (H-bonds)	
23	(a) Benzyl carbocation is highly stable due to resonance.(b) It is racemic mixture. It consists of equal amount of dextrorotatory and	1
	leavorotatory isomers.	1
22	For 10% completion of the reaction, we have	1
	$k(298) = \frac{2.303}{t} \log \frac{100}{90}$	1
	For 25% completion of the reaction, we have $k(308) = \frac{2.303}{t} \log \frac{100}{75}$	
	$\frac{k(308)}{k(298)} = \frac{\frac{2.303}{t} \log \frac{100}{75}}{\frac{2.303}{t} \log \frac{100}{90}} = 2.73$	1
	But, $\log \frac{k(308)}{k(298)} = \frac{E_a}{2.303R[\frac{T^2 - T}{TT^2}]}$	
	$\log 2.73 = \frac{E_a}{2.303 \times 8.314} \times \frac{308 - 298}{308 \times 298}$	1
20	E _a = 76623 J/mol = 76.623 kJ/mol	1
29	(i) [F1(ND3)2012] (ii) 6	1
	(iii) dsp2, square planar and diamagnetic.	
	dsp ² Hybriditation	
	t t t t	
	$\begin{bmatrix} C_{N} & C_{N} \\ N & C_{N} \end{bmatrix}^{2}$	1

		1
30	(a) On dilution no. Of ions per unit volume decreases.(b) Degree of dissociation= 141/150 = 0.94	1
	(c) Molar conductivity will be more.	1
	Reason : In HCl , H+ ion has smaller size than K+ , smaller ion has more mobility in	1
	solution so more will be molar conductivity.	1
31	(a)Actinoids are radioactive and shows more no. Of oxidation states.	1
	(b) 3 MnO4 2- + 4H+> 2 MnO2 + MnO4- +2H2O	1
	In this reaction Mn undergo oxidation as well as reduction. Therefore it is	
	(c)Cr has highest number of unnaired electrons, strong interatomic metal bonding	
	hence no delocalisation of electrons	1
	In Mn electrons are more tightly held by the nucleus, the electrons are not available	
	for bonding resulting weaker metallic bonding in manganese compared to	
	chromium.	
	(d) $10 \operatorname{Cr}_2 \operatorname{O}_7^{-2} + 61^- + 14 \operatorname{H}^+ \rightleftharpoons 2 \operatorname{Cr}^{+3} + 3 \operatorname{I}_2 + 7 \operatorname{H}_2 \operatorname{O}$	1
	Thus, the balanced equation in acidic solution is: 3H2S + 2Cr20722 + 12H4 = 3S + 4Cr23 + 20H20	1
	(ii)	
32	(a) -ve deviation.	1
	Temperature will increase because heat energy will be released.	1
	Relative lowering of vapour pressure:	1
	$\frac{P^* - P_s}{P_s} = \frac{n_B}{n_A}$	
	$\frac{P^0 - 0.9 P^0}{P^0} = \frac{W_B}{X} \times \frac{78}{P^0}$	
	$0.9 P^0$ 50 78	1
	$\rightarrow W_{\rm B} = \frac{1}{0.9} \times 50$	
	$=\frac{50}{9}$	
	(b) $= 5.5 g$	
	(c) Solubility of gas is inversely proportional to Henry constant.	1
	OR	2
	(a) +Ve deviation. $\Delta V mix$ +ve.	2
	$\int (0) D = g(z = 0) a = 350 C(a(0)) - i((1-1)) ((1-1))$ $\int (0.84 = 2(i-1)/2 - 1 \qquad i = 0.58$	1
	$\Delta Tb = Tbs - Tb^{\circ} = iX Kbx w2/M2 x 1000/w1$	
	Tbs- 47.2°C= 0.58x2.3×0.61×1000/ 122×50= 0.13	
	Tbs= 47.3°C	1
		1
33	(a) A= Benzamide. B= Aniline. C= Phenylisocyanide.	3
	(b)(i) p-Nitroqniline> Aniline > p-tiluidine.	1
	(ii) C2H5NH2> (C2H5)3N> (C2H5)2NH	1
	OR	
	(a) A= Benzoic acid. B= Benzamide C= Aniline.	3
	(D) (I) NITROUS ACID TEST: ETNYI AMINE GIVE NZ AND ETNYI AICONOI WIII be formed.	1
	(ii) Isocyanide test: Aniline give foul smell with chloroform and NaOH	

N- Metylaniline will not give this smell.	1

