

OSDAV Public School, Kaithal Pre-Board Exams (2024-25) Class : XII Subject : CHEMISTRY

SET-A

M.M.:70

Time: 3 Hrs . General Instructions:-

All questions are compulsory.

(a) There are 33 questions in this question paper.

(b) SECTION A consists of 16 multiple -choice questions carrying 1 mark each.

(c) SECTION B consists of 5 short answer questions carrying 2 marks each.

(d) SECTION C consists of 7 short answer questions carrying 3 marks each.

(e) SECTION D consists of 2 case - based questions carrying 4 marks.

(f) SECTION E consists of 3 long answer questions carrying 5 marks.

(g) Use of log tables and calculators is not allowed.

Q.N.	Questions		Marks		
	SECTION -A				
	The following questions are multiple choice questions with one correct answer.				
	Each question carries 1 mark. There is no internal choice in this section.				
	Identify the order of reaction if $k = 3 \times 10$	⁻⁴ sec ⁻¹			
1		seudo first order	1		
	1	nird order			
2	Which one of the following pairs will not	form an ideal solution?	1		
	a.benzene and toluene	b. Nitric acid and water			
	c.hexane and heptane	d.Ethyl chloride and ethyl bromide			
3	Which of the following purines (nitrogen		1		
	common to RNA and DNA?				
	a. Adenine, Thymine				
	b. Guanine, Thymine				
	c. Thymine, Cytosine				
	a. Adenine, Guanine				
4	Which of the following does not give aldo		1		
	· · · · · · · · · · · · · · · · · · ·	e-2-one d. cyclohexane carbaldehyde	1		
5	Match Column I with Column II:				
		Column I Column II			
	p) Alkyl group R attached to halogen	i) Haloarenes			
	atom (R-X)				
	q) sp ² hybridisation	ii) Haloalkanes			
	r) Inversion of configuration occurs	iii) S _N 2			
	a) P-(ii) q-(i) r-(iii)				
	b) P-(iii) q-(ii) r-(i)				
	c) P-(i) q-(ii) r-(iii)				
	d) None of these				
6	Which of the following is reducing sugar?		1		
	a. Fructose b. Starch c. Cellulose d. Sucrose				
7	How many Faradays are required to reduce 1 mol of MnO ₄ ⁻ to Mn ²⁺ ?		1		
	a.3 b.4 c.5 d.6				
8	Which of the following alcohols will not us		1		
	a. Butanol b. Butan-2-ol c. 2-methy	/Ibutan-2-ol d. 3 -Methylbutan-2-ol	1		
9	The IUPAC name of anisole is:		1		

	a. 2-methyltoluene	
	b. Methyl phenyl ether	
	c. Methoxybenzene	
	d. Ethoxybenzene	
10	Which of the following is most reactive in nucleophilic addition reaction; a. HCHO b. CH ₃ CHO c. CH ₃ COCH ₃ d. CH ₃ COC ₂ H ₅	1
11	Which of the following would be among the products of the reactions when ammonia	1
	reacts with bromoethane	
	1. $CH_3CH_2NH_2$ 2. $(CH_3CH_2)_2NH$ 3. $(CH_3CH_2)_3N^-$ 4. $(CH_3CH_2)_4N^+Br^-$	
	a. Only 1	
	b. Only 1 and 2	
	c. Only 1, 2 and 3	
	d. All 1,2,3 and 4	
12	What is the oxidation state of Cobalt in [Co(en) ₂ Cl ₂]Br ?	1
	a.+1 b. +2 c.+3 d.+6	
	In the following questions (Q.13-16) a statement of assertion followed by a	
	statementof reason is given. Choose the correct out of following:	
	a. Both A and R are true and R is the correct explanation of A	
	b. Both A and R are true but R is not the correct explanation of A	
	c. A is true but R is false	
	d. A is false but R is true	4
	Assertion: The Boiling point of propanol is much higher than that of butane	1
10	Reason: Propanol exhibits intramolecular hydrogen bonding.	
13	Aggestion. A setie said but not form is said son he hale sounded in the messages of red D	1
14	Assertion: Acetic acid but not formic acid can be halogenated in the presence of red P and Cl ₂	1
	Reason: Acetic acid is weaker than formic acid.	
15	Assertion: Proteins are polymers of amino acids connected by peptide bond.	1
13	Reason: A tetrapeptide contains 4 amino acids linked by 4 peptide bond	1
16	Assertion: Conductivity of an electrolyte increases with decrease in concentration.	
10	Reason: Number of ions per unit volume decreases on dilution	1
	SECTION-B	-
	This section contains 5 questions . The following questions are very short answer	
	type and carry 2 marks each	
17	A first order reaction takes 69.3 min for 50% completion. What is the time required for	2
1/	80% of the reaction to get completed ($\log 5 = 0.6990$, $\log 8 = 0.9030$, $\log 2 = 0.3010$)	-
18	The vapour pressure of pure liquid X and pure liquid Y at 298K are 120 mmHg and	2
	160 mmHg respectively. If equal moles of X and Y are mixed to form ideal solution.	-
	Calculate vapour pressure of solution.	
19	Why is boiling point of o-dichlorobenzene higher than p-dichlorobenzene but melting	2
	point of para isomer is higher than ortho isomer?	
20	How will you convert the following:	1
	a. Toluene to benzoic acid	
	b. Ethanol to 3-Hydroxybutanal	1
21	Account for the following:	2
	a. There are 5 -OH groups in glucose	
	b. Glucose contains 6 carbon atoms in straight chain	
	SECTION-C	
	This section contains 7 questions .Thefollowing questions are short answer type	
	and carry 3 marks each.	
22	a) On the basis of crystal field theory write the electronic configuration for d^4 ion with	
	a strong field ligand for which $\Delta o > P$.	1

	(b) $Ni(CN)$, l has tatrahadral geometry while $Ni(CN)$, l^2 has square planar yet both	
	(b) $[Ni(CO)_4]$ has tetrahedral geometry while $[Ni(CN)_4]^{2-}$ has square planar yet both exhibit diamagnetism. Explain. (Atomic number: Ni = 28]	2
23	Represent the cell in which the following reaction takes place. The value of E° for the	$\frac{2}{3}$
25	cell is 1.260 V. What is the value of E_{cell} ?	5
	$2Al(s) + 3Cd^{+2}(0.1M) \rightarrow 3Cd(s) + 2Al^{+3}(0.01M)$	
24	(a) Why is the C - O bond length in phenols less than that in methanol? (b) $(0.11M) \rightarrow (0.01M)$	1
24		1
	(b) Arrange the following in order of increasing boiling point:	1
	Ethoxyethane, Butanal, Butanol, n-butane	1
	(c) How can phenol be prepared from anisole? Give reaction.	
25	a. Complete the following reactions:	1
	1. $C_6H_5COOH _PCl_5 \longrightarrow A _H_2/Pd-BaSO_4 \longrightarrow B$	1
	1. $C_{6}H_{5}COOH \xrightarrow{PCl_{5}} A \xrightarrow{H_{2}/Pd-BaSO_{4}} B$ 2. $CH_{3}CN \xrightarrow{i) CH_{3}MgBr} A \xrightarrow{Zn(Hg)/HCl} B$	
	b. State the position on the ring at which electrophilic substitution is likely to	
	predominate in benzaldehyde. Explain why?	1
26	a. Name the vitamin which is responsible for coagulation of blood.	1
	b. What type of linkage is present in nucleic acids?	1
	c. What is the difference between structure of glucose and fructose	1
27	Write the mechanism of the following reaction (mentioning all the steps)	
	$CH_{3}CH_{2}OH \qquad \underbrace{conc. H_{2}SO_{4}}_{CH_{2}=CH_{2}+H_{2}O}$	3
28	The rate of reaction at 700K is 4 times faster than the rate at a lower temperature T.	3
	The energy of activation is 20.19×10^3 J/mol and the rate constant at 700K is 0.08 sec ⁻¹	
	1) Calculate the rate constant at temperature T	
	2) Find Temperature T (use $R = 8.31 \text{ J/mol}$), (log $4 = 0.6021$)	
	Section-D	
	The following questions are case-based questions. Each question carries 4 (1+1+2)	
	marks each. Read the passage carefully and answer the questions that follow	
	Crystal field theory is an electrostatic model which considers metal ligand bond to be	
	ionic arising purely from electrostatic interaction between the metal ion and ligand.	
	Ligands are treated as point charges in case of anions or dipoles in case of neutral	
	molecules. The five d orbitals in an isolated gaseous metal atom/ion have same energy,	
29	that is they are degenerate. This degeneracy is maintained if a spherically symmetrical	
	field of negative charges surrounds the metal atom/ion. However when this negative	
	field is due to ligands in a complex, it becomes asymmetrical and the degeneracy of	
	the d orbitals is lifted. It results in splitting of d orbitals.	
	a. The CFSE for $[CoCl_6]^{4-}$ is 18,000 cm ⁻¹ . Calculate the CFSE for $[CoCl_4]^{-2}$	
	$1 \qquad 1 \qquad W_{1} \rightarrow 1 \qquad \text{in } 1 \rightarrow 1 \qquad \text{in } 1 \rightarrow 1 \qquad \text{in } 1 \qquad i$	
	b. What kind of isomerism exists in $[Cr (H_2O)_6]Cl_3$ and $[Cr (H_2O)_5Cl]Cl_2.H_2O$	1
	 b. What kind of isomerism exists in [Cr (H₂O)₆]Cl₃ and [Cr (H₂O)₅Cl]Cl₂.H₂O c. Write Hybridisation and magnetic character of [Fe (H₂O₆]⁺² 	1
	c. Write Hybridisation and magnetic character of [Fe $(H_2O_6]^{+2}$	1
	 c. Write Hybridisation and magnetic character of [Fe (H₂O₆]⁺² Read the passage carefully and answer the questions that follow: 	1
	 c. Write Hybridisation and magnetic character of [Fe (H₂O₆]⁺² Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells 	1
30	c. Write Hybridisation and magnetic character of $[Fe (H_2O_6]^{+2}]$ Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications	1
30	c. Write Hybridisation and magnetic character of $[Fe (H_2O_6]^{+2}]$ Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications including small scale power storage such as UPS systems, ignition power sources for	1
30	c. Write Hybridisation and magnetic character of $[Fe (H_2O_6]^{+2}]$ Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications	1
30	c. Write Hybridisation and magnetic character of $[Fe (H_2O_6]^{+2}]$ Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications including small scale power storage such as UPS systems, ignition power sources for automobiles , along with large grid scale power systems. The spongy lead act as anode and lead dioxide act as cathode.	1 2
30	 c. Write Hybridisation and magnetic character of [Fe (H₂O₆]⁺² Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications including small scale power storage such as UPS systems, ignition power sources for automobiles , along with large grid scale power systems. The spongy lead act as anode and lead dioxide act as cathode. a. What are secondary cells? 	1 2 1
30	c. Write Hybridisation and magnetic character of $[Fe (H_2O_6]^{+2}]$ Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications including small scale power storage such as UPS systems, ignition power sources for automobiles , along with large grid scale power systems. The spongy lead act as anode and lead dioxide act as cathode.	1 2

	Section-E				
	The following questions are long answer type and carry 5 marks each.				
	Account for the following: (i) Transition elements form interstitial compounds				
31	(i) Transition elements form interstitial compounds.	1			
	(ii) Mn^{+3} is strongly oxidising whereas Cr^{+2} is strongly reducing.	1 1			
	 (iii) Transition metals have high melting point. (iv) Why Mn₂O₃ is basic but Mn₂O₇ is acidic (v) Write the equation showing the effect of pH on dichromate ion solution? 				
	(v) Write the equation showing the effect of pH on dichromate ion solution?				
32	An organic compound A with molecular formula C7H7NO reacts with Br2/aq.KOH to	_			
	give compound B, which on reaction with NaNO ₂ and HCl at 0^{0} C gives C. Compound	5			
	C on heating with C ₂ H ₅ OH gives a hydrocarbon D. Compound B on further reaction				
	with Br ₂ water gives white precipitate of compound E . Identify A,B,C,D and E and				
	also justify your answer by giving relevant chemical equation.				
	Or				
	a. Write the reactions involved in:				
	1. Carbyl amine test				
	2. Gabriel phthalimide synthesisb. Give reasons:				
	1. Aniline on nitration gives good amount of m- nitroaniline, though -NH ₂ is	3			
	o/p directing in electrophilic substitution reactions.	5			
	 (CH₃)₂NH is more basic than (CH₃)₃N in an aqueous solution. 				
	3. Ammonolysis of alkyl halides is not a good method to prepare pure primary				
	amines.				
33	a. Why is boiling point of 1M NaCl solution more than that of 1M glucose	1			
	solution?				
	b. Calculate the boiling point elevation for a solution prepared by adding 10g of				
	MgCl ₂ to 200g of water assuming MgCl ₂ is completely dissociated.	2			
	c. Write two differences between ideal and non ideal solutions.	2			

OSDAV Public School, Kaithal Pre-Board Exams (2024-25) Class : XII Subject : CHEMISTRY

M.M. 70

Time: 3 Hrs .

General Instructions:-

All questions are compulsory.

(a) There are 33 questions in this question paper.

(b) SECTION A consists of 16 multiple -choice questions carrying 1 mark each.

(c) SECTION B consists of 5 short answer questions carrying 2 marks each.

(d) SECTION C consists of 7 short answer questions carrying 3 marks each.

(e) SECTION D consists of 2 case - based questions carrying 4 marks.

(f) SECTION E consists of 3 long answer questions carrying 5 marks.

(g) Use of log tables and calculators is not allowed.

Q.N.	Ques	stions	Marks		
	SECTION -A				
	The following questions are multiple choice questions with one correct answer.				
	Each question carries 1 mark. There is no internal choice in this section.				
1	The unit of rate constant for the reaction 2.	$A + 2B \longrightarrow A_2B_2$ which has rate = $[A]^2[B]$	1		
1	a. Mol L^{-1} sec ⁻¹ b. Sec ⁻¹		1		
	c. Mol L^{-1}				
	d. $Mol^{-2} L^2 sec^{-1}$				
2	Which one of the following aq. Solutions h	ave highest boiling point?	1		
2	a. 1 M NaOH	ave ingliest boning point.	1		
	b. $1 \text{ M} \text{ Na}_2 \text{SO}_4$				
	c. $1 \text{ M NH}_4 \text{NO}_3$				
	d. 1 M KNO ₃				
3	KMnO ₄ is coloured due to:		1		
	a. d-d transitions				
	b. charge transfer from ligand to metal				
	c. charge transfer from metal to ligand				
	d. unpaired electrons in d orbitals of Mn				
4	Which kind of compounds undergo Canniz	aro reactions?	1		
	a. Ketones with no alpha hydrogen				
	b. Aldehydes with alpha hydrogenc. Carboxylic acids with alpha hydrogen				
	c. Carboxylic acids with alpha hydrogend. Aldehydes with no alpha hydrogen				
5	Match Column I with Column II:				
e	Column I	Column II	-		
	p) Alkyl group R attached to halogen	i) Haloarenes			
	atom (R-X)				
	q) sp ² hybridisation	ii) Haloalkanes			
	r) Inversion of configuration occurs iii) S _N 2				
	a) P-(ii) q-(i) r-(iii)				
	b) $P-(iii) q-(ii) r-(i)$				

	c) P-(i) q-(ii) r-(iii)	
	d) None of these	
6	Which of the following is non reducing sugar?	1
	a. Fructose b. Maltose c. glucose d. Sucrose	
7	How many Faradays are required to reduce 1 mol of MnO ₄ ⁻ to Mn ²⁺ ?	1
	a.3 b.4 c.5 d.6	
8	Which of the following alcohols will not undergo oxidation?	1
	a. Butanol b. Butan-2-ol c. 2-methylbutan-2-ol d. 3 -Methylbutan-2-ol	
9	What is the mixture of D (+) glucose and D (-) fructose known as:	1
	a. Anomers b. Invert sugars c. Racemic Mixtures d. Optical mixture	
10	Which of the following is least reactive in nucleophilic addition reaction;	1
	a. HCHO b. CH ₃ CHO c. C ₆ H ₅ COC ₆ H ₅ d. CH ₃ COC ₂ H ₅	
11	Which of the following would be among the products of the reactions when ammonia	1
	reacts with bromoethane	
	1. $CH_3CH_2NH_2$ 2. $(CH_3CH_2)_2NH$ 3. $(CH_3CH_2)_3N^-$ 4. $(CH_3CH_2)_4N^+Br^-$	
	a. Only 1	
	b. Only 1 and 2	
	c. Only 1, 2 and 3	
	d. All 1,2,3 and 4	
12	What is the oxidation state of Fe in [Fe(CO) ₅]?	1
	a.+1 b. +2 c.+3 d. 0	
	In the following questions (Q.13-16) a statement of assertion followed by a	
	statement of reason is given. Choose the correct out of following:	
	a. Both A and R are true and R is the correct explanation of A	
	b. Both A and R are true but R is not the correct explanation of Ac. A is true but R is false	
	d. A is false but R is true	
	Assertion: Linkage isomerism arises in co ordination compounds containing	1
	ambidentate ligand	1
13	Reason: Ambidentate ligand has two different donor atoms	
13	Assertion: Benzoic acids does not undergo Friedel craft reaction	1
14	Reason: The carboxyl group is activating group and undergo electrophilic substitution	1
	reaction	
15	Assertion: Proteins are polymers of amino acids connected by peptide bond.	1
10	Reason: A tetrapeptide contains 4 amino acids linked by 4 peptide bond	-
16	Assertion: Conductivity of an electrolyte increases with decrease in concentration.	
10	Reason: Number of ions per unit volume decreases on dilution	1
	SECTION-B	
	This section contains 5 questions .Thefollowing questions are very short answer	
	type and carry 2 marks each	
	Why is boiling point of o-dichlorobenzene higher than p-dichlorobenzene but melting	
17	point of para isomer is higher than ortho isomer?	2
18	The vapour pressure of pure liquid X and pure liquid Y at 298K are 120 mmHg and	2
	160 mmHg respectively. If equal moles of X and Y are mixed to form ideal solution.	
	Calculate vapour pressure of solution.	
19	A first order reaction takes 69.3 min for 50% completion. What is the time required for	2
	80% of the reaction to get completed ($\log 5 = 0.6990$, $\log 8 = 0.9030$, $\log 2 = 0.3010$)	
20	How will you convert the following:	1
	a. Toluene to benzoic acid	

	b. Ethanol to 3-Hydroxybutanal	1
21	Account for the following:	2
	a. There are 5 -OH groups in glucose	
	b. Glucose contains 6 carbon atoms in straight chain	
	SECTION-C	
	This section contains 7 questions .Thefollowing questions are short answer type	
	and carry 3 marks each.	
22	a) On the basis of crystal field theory write the electronic configuration for d ⁶ ion with	
	a weak field ligand for which $\Delta o < P$.	1
	(b) $[Ni(CO)_4]$ has tetrahedral geometry while $[Ni(CN)_4]^{2-}$ has square planar yet both	
	exhibit diamagnetism.Explain. (Atomic number: Ni = 28]	2
23	Represent the cell in which the following reaction takes place. The value of E° for the	3
	cell is 1.260 V. What is the value of E_{cell} ?	
	$2Al(s) + 3Cd^{+2}(0.1M) \rightarrow 3Cd(s) + 2Al^{+3}(0.01M)$	
24	a. Name the vitamin whose deficiency causes night blindness	1
	b. What type of linkage is present in proteins?	1
	c. What is the difference between structure of DNA and RNA.	1
25	a. Complete the following reactions:	1
	1. C_6H_5COOH PCI ₅ A $H_2/Pd-BaSO_4$ B	1
	1. $C_6H_5COOH \xrightarrow{PCl_5} A \xrightarrow{H_2/Pd-BaSO_4} B$ 2. $CH_3CN \xrightarrow{i) CH_3MgBr} A \xrightarrow{Zn(Hg)/HCl} B$	
	ii) H ₃ O ⁺	
	b. State the position on the ring at which electrophilic substitution is likely to	1
	predominate in benzaldehyde. Explain why?	
26	(a) Why is the C - O bond length in phenols less than that in methanol?	1
	(b) Arrange the following in order of increasing boiling point:	1
	Ethoxyethane, Butanal, Butanol, n-butane	1
	(c) How can phenol be prepared from anisole? Give reaction	
27	Write the mechanism of the acid catalysed hydration of alkenes to yield	_
	alcohols.(Mention all the steps).	3
28	The rate of reaction at 700K is 4 times faster than the rate at a lower temperature T.	3
	The energy of activation is 20.19×10^3 J/mol and the rate constant at 700K is 0.08 sec ⁻¹	
	1) Calculate the rate constant at temperature T	
	2) Find Temperature T (use $R = 8.31 \text{ J/mol}$), (log $4 = 0.6021$)	
	Section-D	
	The following questions are case-based questions. Each question carries 4 (1+1+2)	
	marks each. Read the passage carefully and answer the questions that follow	
	Crystal field theory is an electrostatic model which considers metal ligand bond to be	
	ionic arising purely from electrostatic interaction between the metal ion and ligand.	
	Ligands are treated as point charges in case of anions or dipoles in case of neutral	
	molecules. The five d orbitals in an isolated gaseous metal atom/ion have same energy,	
29	that is they are degenerate. This degeneracy is maintained if a spherically symmetrical	
	field of negative charges surrounds the metal atom/ion. However when this negative	
	field is due to ligands in a complex, it becomes asymmetrical and the degeneracy of	
	the d orbitals is lifted. It results in splitting of d orbitals.	
	a. The CFSE for $[CoCl_6]^{4-}$ is 18,000 cm ⁻¹ . Calculate the CFSE for $[CoCl_4]^{-2}$	
	b. What kind of isomerism exists in $[Cr (H_2O)_6]Cl_3$ and $[Cr (H_2O)_5Cl]Cl_2.H_2O$	1
	c. Write Hybridisation and magnetic character of $[Fe (H_2O_6]^{+2}]$	1
		2

30	 Read the passage carefully and answer the questions that follow: Electrochemical cells are of two types : primary cells and secondary cells. Primary cells include dry cells , mercury cells etc. The lead acid battery represents the oldest rechargeable battery. Lead acid batteries can be found in wide variety of applications including small scale power storage such as UPS systems, ignition power sources for automobiles , along with large grid scale power systems. The spongy lead act as anode and lead dioxide act as cathode. a. What are secondary cells? b. Write the reactions which occur at anode and cathode during discharging of lead storage battery. c. Name the cell which is used in wrist watch? 	1 2 1
	Section-E	
	The following questions are long answer type and carry 5 marks each.	
31	An organic compound A with molecular formula C_7H_7NO reacts with Br_2/aq .KOH to give compound B, which on reaction with NaNO ₂ and HCl at $0^{0}C$ gives C. Compound C on heating with C_2H_5OH gives a hydrocarbon D. Compound B on further reaction with Br_2 water gives white precipitate of compound E. Identify A,B,C,D and E and also justify your answer by giving relevant chemical equation. Or	5
	 a. Write the reactions involved in: 1. Hoffmann Bromamide degradation 2. Gabriel phthalimide synthesis b. Give reasons: 	2
	 Aniline on nitration gives good amount of m- nitroaniline, though -NH₂ is o/p directing in electrophilic substitution reactions. (CH₃)₂NH is more basic than (CH₃)₃N in an aqueous solution. Ammonolysis of alkyl halides is not a good method to prepare pure primary amines. 	3
32	Account for the following: (i) Why Zn,Cd and Hg are soft and have low melting point. (ii)Mn ⁺³ is strongly oxidising whereas Cr ⁺² is strongly reducing. (iii) Zr and Hf have almost identical radii.	5
	(iv) Why Transition metals can behave as alloys(v) Write the equation showing the effect of pH on dichromate ion solution?	
33	 a. Why is boiling point of 1M NaCl solution more than that of 1M glucose solution? 	1
	 b. Calculate the boiling point elevation for a solution prepared by adding 10g of MgCl₂ to 200g of water assuming MgCl₂ is completely dissociated. c. State Raoult's law for a solution containing volatile components. Write two characteristics of the solution which obey Raoult's law. 	2 2

OSDAV Public School, Kaithal Pre-Board Exams (2024-25) Class : XII Subject : CHEMISTRY Answer-Key

Section-A

1. (a) First order

- 2. (b) Nitric acid and water
- 3. (d) Adenine, Guanine
- 4. (b) Benzaldehyde
- 5. (a) P-(ii), Q-(i), R-(iii)
- 6. (a) Fructose
- **7.** (c) 5
- 8. (c) 2-Methylbutan-2-ol
- 9. (c) Methoxybenzene
- **10.** (a) HCHO
- 11. (d) All 1, 2, 3, and 4
- **12.** (c) +3
- 13. (c) A is true but R is false
- 14. (c) A is true but R is false
- 15. (c) A is true but R is false
- 16. (c) A is true but R is false

Section-B

Q17. t1/2=69.3 min=ln 2K

K=ln 269.3min-1 For 80% conversion, if we assume initial concentration to be a₀, concentration left would be a₀5 t×ln 269.3=ln(a₀a₀/5) t=69.3 ln 5ln 2=161 min-1

Q18.

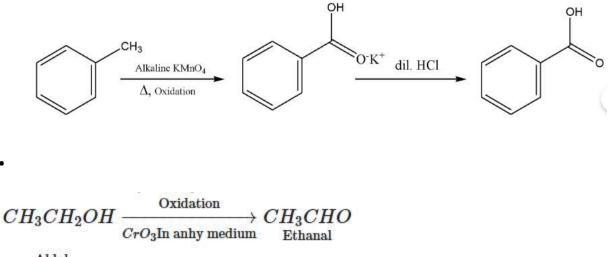
At 25°C, Pure vapour pressure of liquid X and Y are

 $P_X^0 = 120 \text{ mm Hg}$ and $P_Y^0 = 160 \text{ mm Hg}$

Let the number of moles of liquid X and Y be 'n'

$$X_X = \frac{n}{n+n}$$

then, $X_X = X_Y = \frac{1}{2} = 0.5$

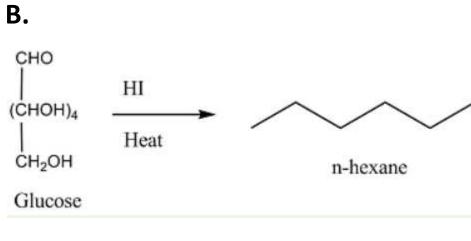

Total vapour pressure of solution will be,

$$P_T = P_X^0 X_X + P_Y^0 X_Y$$

= 120 × 0.5 + 160 × 0.5
= 60 + 80
= 140 mm of Hg

Q19. O-Dichlorobenzene has a bit higher boiling point due to Resonance and inductive effects which are slightly lower in para and resonance absent in meta but para isomer has more melting point because it has symmetric structure due to which it has strong bonding .

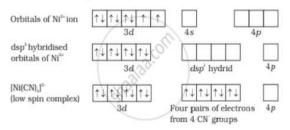
Q20.A


Β.

 $\xrightarrow{\text{Aldol}} CH_3CHCH_2CHO$ $\downarrow OH$ 3-hydroxy butanal

Q21.A

Section-C


Q22.A

Electronic configuration for d^4 ion, if $\Delta_0 > P$

 $t_{2g}^4 e_g^0$

Β.

In $[Ni(CN)_4]^{2-}$, nickel is in a +2 oxidation state and the ion has the electronic configuration $3d^8$. The hybridisation scheme is shown in the diagram.

Whereas in [Ni(CO)₄], Ni is in a +2 oxidation state and shows sp² hybridisation due to which its geometry is tetrahedral.

Q23.

```
Al(s) /Cd^{2+} (0.1M) // Al^{3+} (0.01M) //Cd(s)

2 Al(s) + 3 Cd<sup>2+</sup> (0.1 M) \longrightarrow 3 Cd(s) + 2 Al<sup>3+</sup> (0.01 M)

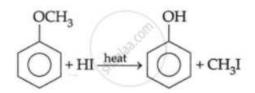
Ecell = E°cell \frac{-0.059}{n} \log \frac{[Al^{3+}]^2}{[Cd^{2+}]^3}

Ecell = 1.26 - \frac{0.059}{6} \log \frac{(0.01)^2}{(0.1)^3}

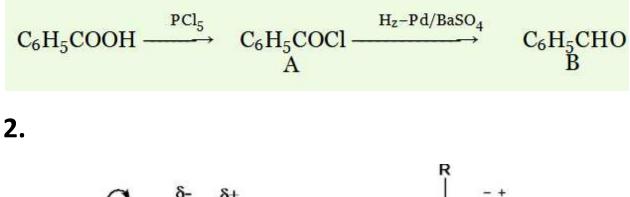
= 1.26 - \frac{0.059}{6} (-1)

= 1.26 + 0.009

= 1.269 V
```


Q24.A

The carbon-oxygen bond length in phenol (136 pm) is somewhat shorter than that in methanol. This is owing to the partial double bond character of the unshared electron pair of oxygen conjugated with the aromatic ring and the sp² hybridised state of carbon to which oxygen is connected


B. n-butane < ethoxyethane < butanal <butanol


C.

When anisole reacts with HI, the primary products are phenol and CH₃I.

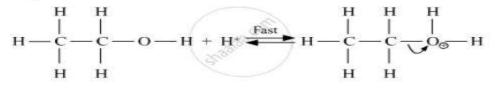
Q25.A.1

B. Thus electrophilic substitutions in benzaldehyde occur under drastic condition. In other words -CHO group is deactivating in nature. Further the decrease in electron density is more at the o and p-positions therefore electrophilic substitution occurs only at m-position.

Q26.A) Vitamin-K

B. Phosphodiester linkage

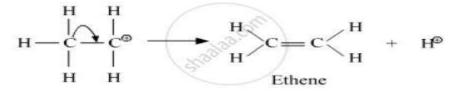
C.


Both Glucose and Fructose are hexose sugars with six carbon atoms but Glucose is an aldohexose and fructose is ketohexose which means the functional group present in glucose is an aldehyde and the functional group in fructose is a ketone.

O H OH OH || | | |CH₂OH-C-C-C-C-C-CH₂OH | | |HO H H D-fructose OH H OH OH | | | |CHO-C-C-C-C-CH₂OH | | | |H HO H H D-glucose

Q27.

Mechanism: Dehydration of ethanol


Step 1: Formation of Protonated alcohol

Step 2: Formation of carbocation(slow step)

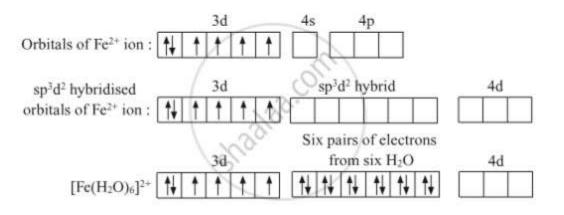
Step 3: Formation of ethane

Q29.A

$$\mathrm{CFSE}_{tetrahedral} = \frac{4}{9} \times \mathrm{CFSE}_{octahedral}$$

$$\mathrm{CFSE}_{\mathrm{tetrahedral}} = rac{4}{9} imes 18,000\,\mathrm{cm}^{-1}$$

 $\mathrm{CFSE}_{\mathrm{tetrahedral}} = 8,000\,\mathrm{cm}^{-1}$


B. Solvate isomerism

С.

Hybridisation - sp^3d^2

Magnetic character- Strongly paramagnetic

[Fe(H₂O)₆]²⁺

Q30.A- An electric cell that can be rechargeable and can therefore be used to store electrical energy in the form of chemical energy is called secondary cell.

Β.

• Reaction involved during the recharging of the battery:

Anode: $PbSO_4(s) + 2H_2O(l) \rightarrow PbO_2(s) + 4H^+(aq) + 2SO_4^{2-}(aq) + 2e^-$ Cathode: $PbSO_4(s) + 2e^- \rightarrow Pb(s) + SO_4^{2-}(aq)$

C. Dry Cell

Section-E

Q31.(I)- Most of the transition metals exists as CCP and HCP in which we can observe many vacant places (holes), these holes are occupied by elements like oxygen nitrogen hydrogen carbon etc., leading to the formation of interstitial compounds.

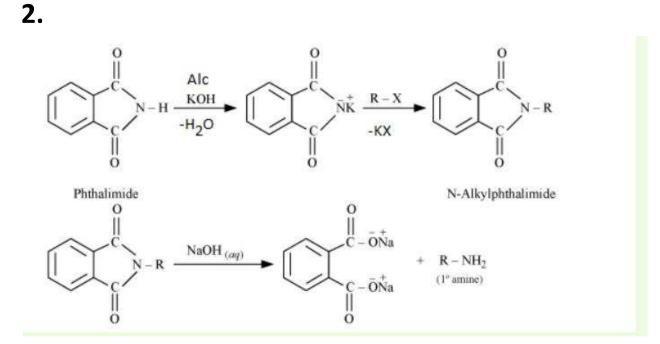
(II)

 Cr^{2+} has the configuration $3d^4$. It can lose electron to form $3d^3$ which has stable configuration (as it has half-filled t_2g level). Hence , it is reducing. On the other hand, Mn^{3+} also has $3d^4$. configuration but it can gain electron to form Mn^{2+} which has stable $3d^5$. configuration (as it is exactly half - filled). Hence oxidising.

(III) Due to presence of unpaired electron in their atoms, transition elements in general, have stronger interatomic interaction and hence stronger bonding between atoms. (IV) Mn2O3 is basic due to the presence of delectrons that can be donated, while Mn2O7 is acidic because it has a higher oxidation state, leading to a deficiency of electrons and a tendency to accept electron pairs.

(V)

The chromates and dichromates are interconvertible in aqueous solution depending upon pH of the solution. Increasing the pH (in basic solution) of dichromate ions a colour change from orange to yellow is observed as dichromate ions change to chromate ions.


Q32.

- A: Benzamide $(C_6H_5C(=O)NH_2)$
- **B**: Aniline $(C_6H_5NH_2)$
- C: Benzene diazonium chloride ($C_6H_5N_2Cl$)
- **D**: Ethylbenzene $(C_6H_5C_2H_5)$
- **E**: 2,4,5–Tribromoaniline ($C_6H_2Br_3NH_2$)

OR

A.1-

 $\frac{R - NH_2}{Primary amine} + \frac{CHCl_3}{Chloroform} + \frac{3KOH}{Potassium hydroxide} \longrightarrow \frac{R - NC}{Carbylamine} + \frac{3KCl + 3H_2O}{Carbylamine}$

B.1- Nitration is carried out in an acidic medium. In a strongly acidic medium, aniline is protonated to give anilinium ion (which is meta-directing). For this reason, aniline on nitration gives a substantial amount of m-nitroaniline.

2.

 $(CH_3)_2NH_2^+$ is hydrated to a greater extent than $(CH_3)_3NH^+$. As the number of methyl groups increases, the extent of hydration decreases due to steric hindrance. Greater is the extent of hydration, greater is the stability of ion and greater is the basic strength of amine. **3.** The process of ammonolysis yields a mixture of primary secondary tertiary amines and quaternary salts. The separation of this amines is a very complicated process and difficult. Therefore it is difficult to prepare pure amines by ammonolysis of alkyl halides.

Q33.A-

Because the van't Hoff factor of 1 M NaCl (2) solution is bigger than that of 1 M glucose (1) solution, boiling point is directly proportional to molality and van't Hoff factor. As a result, the boiling point of 1 M NaCl is higher than that of 1 M glucose solution.

Β.

We know that $\Delta T_b = iK_bm$ $MgCl_2 \longrightarrow Mg^{2+} + 2Cl^{-}$ i = 3Here, m = $\frac{W_B \times 1000}{M_B \times W_A} = 0.526$ $\Delta T_b = iK_bm$ $= 3 \times 0.512 \times 0.526$ = 0.808 K

С.

	Ideal solutions	Nonideal solutions
1.	Ideal solutions obey Raoult's law over entire range of concentrations.	Nonideal solutions do not obey Raoult's law over the entire range of concentrations.
2.	The vapour pressure of ideal solution always lies between vapour pressures of pure components.	The vapour pressures of these solutions can be higher or lower than those of pure components.
3.	Solvent-solute, solute-solute and solvent-solvent molecular interactions are comparable.	Solute-solvent intermolecular attractions may be weaker or stronger than those between solute-solute molecules and solvent-solvent molecules.
4.	e.g. Benzene + toluene	e.g. Ethanol + acetone Carbon disulphide + acetone Phenol + aniline Chloroform + acetone

Set-B

(Different Questions)

1.D		
2. B		
3. B		
4. D		
6.D		
8. C		
9.B		
10.A		
12.D		
13.A		
14.C		
15. C		

16. D

22. t2g(4) eg(2)

24.a. Vitamin A causes night blindness

b.peptide linkage is present in proteins

c. DNA is double stranded and has deoxyribose sugar present in it whereas RNA is single stranded and has ribose sugar present in it

30. c The cell used in wrist watch is mercury cell (also called as button cell)

32 a. Zn,Cd and Hg have completely filled d orbitals therefore their metallic bond is quite weak as a result of which they have low melting point

c. Zr and Hf have identical size due to lanthanoid contraction

d. Transition elements have almost identical radii as a result of which they exist as alloys .

33. c. According to Raoult law the partial vapour pressure of a solution in a solution is directly proportional to its mole fraction in the solution.