

• All Questions are compulsory.

	SECTION - A							
SN	Section A consists of 20 questions of 1 mark each.							
1.	If the HCF of 85 and 153 is expressible in the form $85n - 153$, then the value of n is	1						
	(a) 3 (b) 2 (c) 4 (d) 1							
2.	Which of the following quadratic equations has its roots as $2 + \sqrt{3}$ and $2 - \sqrt{3}$?	1						
	(a) $2x^2 - 4x + 1 = 0$ (b) $x^2 - 4x + 1 = 0$							
	(c) $x^2 - 6x + 4 = 0$ (d) None of these							
3.	If the sum of the squares of zeroes of a quadratic polynomial $f(x) = x^2 - 8x + k$ is 40, then the value of 'k' is	1						
	(a) 24 (b) 12 (c) 6 (d) 22							
4.	If $2^{x-y} = 8$ and $2^{x+y} = 64$, then the value of x and y are	1						
	(a) $\frac{9}{2}$, $\frac{3}{2}$ (b) $\frac{-9}{2}$, $\frac{3}{2}$ (c) $\frac{9}{2}$, $\frac{-3}{2}$ (d) 3, 2							
5.	If $P(1,2)$, $Q(4,6)$, $R(5,7)$ and $S(m,n)$ are the vertices of a parallelogram PQRS taken in order, then	1						
	(a) $m = 2$, $n = 4$ (b) $m = 3$, $n = 4$							
	(c) $m = 2$, $n = 3$ (d) $m = 3$, $n = 5$							
6.	O is the point of intersection of two chords AB and CD, such that $OB = OD$ and $\angle AOC = 45^\circ$, then the triangles OAC and ODB are	1						
	 (a) equilateral but not similar (b) isosceles but not similar (c) equilateral and similar (d) isosceles and similar 							

7.	In the figure, $\triangle ABC$ is right angled at C. D is the midpoint of BC. Then $\frac{tan \theta}{tan \phi} =$ (a) $\frac{1}{2}$ (b) 2 (c) $\sqrt{3}$ (d) $\frac{1}{\sqrt{3}}$	1
8.	If $sin x + cosec x = 2$, then $sin^{19}x + cosec^{20}x$ is	1
	(a) 2^{19} (b) 2^{20} (c) 2 (d) 2^{39}	
9.	In the figure, the measures of $\angle D$ and $\angle F$ respectively are (a) 50°, 40° (c) 40°, 50° (d) 30, 20 (b) 20°, 30° (c) 40°, 50° (c) 40° (c) 40°, 50° (c) 40° (c)	1
10.	The value of x for which DE BC in the given figure is	1
	(a) 4 (b) 1	
	(c) 3 (d) 2	
11.	If the perimeter of a square is equal to the perimeter of a circle, then the ratio of their areas is	1
	(a) 22:13 (b) 11:14 (c) 14:11 (d) 13:22	
12.	In the figure, if $\angle AOB = 125^{\circ}$, then $\angle COD =$	1
	(a) 62.5° (b) 45°	
	(c) 35° (d) 55	

13.	A sphere of dian partly filled with	neter 18 cm is c water. If the sp	lropped into ohere is com	a cylindrical ve pletely submerg	ssel of diam ged, then the	eter 36 cm water level	1
	(a) 3	m. (b) 4		(c) 5	(d) 6		
14.	If for a data mea	an : median = 9	: 8, then me	edian : mode is			1
	(a) 8 : 9	(b) 4 : 3		(c) 7 : 6	(d) 5 : 4	1	
15.	A chord of a circ of the minor sec	cle of radius 14 tor is	cm subtends	a right angle at	the centre.	Then the area	1
	(a) 154 <i>cm</i> ²	(b)) 156	cm^2	(c) 158 <i>cm</i> ²	(d) 60 c	rm ²	
16.	For the followin	g distribution					1
	Class	0-5	5 - 10	10-15	15 - 20	20 - 25	
	Frequency	10	15	12	20	9	
	the difference be	etween the uppe	er limit of the	e modal class an	id the lower	limit of the	
	(a) 5	(b) 10		(c) 15	(d) 20		
17.	A game consists the same result i	of tossing a co n all the tosses	in 3 times ar is a success,	nd noting the out then the probab	tcome each pility of losir	time. If getting ig the game is	1
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$		(c) $\frac{1}{8}$	$(d)\frac{5}{8}$		
18.	If $\frac{\sin^2\theta}{7} + \frac{\cos^2\theta}{7}$	$\frac{x^2}{\theta} = \frac{x}{21}$, the	n <i>x</i> is				1
	(a) 1	(b) 2		(c) 3	(d) 4		
	Direction for qu Assertion (A) is	uestions 19 & 2 followed by a s	20: In question statement of	on numbers 19 a Reason (R) Ch	and 20, a sta	tement of	
19.	Assertion : \sqrt{r}	1011000000000000000000000000000000000	l number wł	nere <i>n</i> is a prime	e number.		1
	Reason : Square root of any prime number is an irrational number.						
	(a) Both Asser	tion (A) and	Reason (R)	are true and	Reason (R)	is the correct	
	explanation of A	Assertion (A).	(D)	ma time hast Day	(D) :-		
	explanation of A	Assertion (A).	eason (K) a	ie true but Rea	15011 (K) 1S	not the correct	
	(c) Assertion (A) is true but Rea	ason (R) is fa	alse.			
	(d) Assertion (A) is false but Re	eason (R) is t	true.			

20	Assertion : If A and B are the points $(-3, 4)$ and $(2, 1)$ respectively, then the	1
20.	coordinates of the point C on AB produced such that $AC = 2BC$ are $(7, -2)$	I
	<i>Reason</i> : The midpoint of the line joining (x_1, y_1) and (x_2, y_2) is $(\frac{x_1+x_2}{3}, \frac{y_1+y_2}{3})$	
	 (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A). (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A). (c) Assertion (A) is true but Reason (R) is false. (d) Assertion (A) is false but Reason (R) is true. 	
	SECTION - B	
	Section D consists of 5 questions of 2 monlys coch	
21.	Find the value(s) of k so that the pair of equations $x + 2y = 5$ and $3x + ky + 15 = 0$ has a unique solution.	2
22.		2
	In the figure, $\frac{A0}{C0} = \frac{B0}{D0} = \frac{2}{3}$ and AB = 4cm. Find DC.	
23.	In the figure, AB is a diameter of a circle with centre O and AT is a tangent. If $\angle AOQ = 58^{\circ}$, find $\angle ATQ$.	2
24.	A bicycle wheel makes 5000 revolutions in moving 11km. Find the diameter of the wheel in metres.	2
25.		2
	Evaluate $\frac{3\sin 3A + 2\cos(5A + 10)^0}{\sqrt{3}\tan 3A - \csc(5A - 20)^0}$ when $A = 10^0$	
	Section C	
	Section C consists of 6 questions of 3 marks each.	
26.	Prove that $6 + \sqrt{2}$ is irrational.	3
27.	Find the zeroes of the polynomial $3x^2-5x+2$ and verify the relationship between the zeroes and the coefficients.	3

28.	The students of a would be 1 row le number of studen	The students of a class are made to stand in rows. If 3 students are extra in a row, there would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the number of students in the class.					
29.	Prove that $\frac{1}{\cos \theta}$	$\frac{1}{cA - cotA}$	$\frac{1}{\sin A} = \frac{1}{\sin A}$	<u>1 1</u> nA cosecA	+ cotA		3
30.	\triangle ABC is drawn segments BD an If the area of \triangle	n to circumser ad DC are resp ABC is 54cm	tibe a circle of bectively of le 1 ² , find AB ar	radius 3cm s ngths 6cm an nd AC.	uch that the d 9cm.	$E \xrightarrow{O} F$ B 6 D 9	3
31.	From a pack of 5 a) a red face card b) an Ace c) a queen	52 cards, one o 1	card is chosen	at random. Fi	nd the probab	vility of getting	3
	Section D						
	Section D consists of 4 questions of 5 marks each.						
32.	A pole has to be erected at a point on the boundary of a circular park of diameter 13m in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7m. Is it possible to do so? If yes at what distances from the two gates should the pole be erected?				5		
33.	Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, then the other two sides are divided in the same ratio. In the figure, $\angle D = \angle E$ and $\frac{AD}{DB} = \frac{AE}{EC}$. Using the above theorem, prove that $\triangle BAC$ is an isosceles triangle.					5	
34.	A wooden toy was made by scooping out a hemisphere of same radius from each end of a solid cylinder. If the height of the cylinder is 10 cm, and its base is of radius 3.5 cm, find the volume of wood in the toy.					5	
35.	A survey regardi	ng the heights	s (in cm) of 50) girls of class	X of a schoo	l was	5
	conducted and th	e following d	ata was obtain	ned.			
	Height (in cm)	120 - 130	130 - 140	140 - 150	150 – 160	160 – 170	
	No. of girls 2 8 12 20 8						
	Find the mean ar	nd mode of the	e above data.				
			SECTI	ON - E			
	Case study based questions are compulsory.						

36.	Case Study – 1
	Ajay , Biju and Collin are childhood friends. They always want to sit in a row in the classroom. But the class teacher changes the seating arrangement everyday. Biju is very good in maths. He considers the centre of the class as origin and marks their positions on a paper in a coordinate system. One day Biju made the following diagram of their seating position. (i) Find the ratio in which AB is divided by the x-axis. 1 (ii) What is the position of David, if he is sitting at the 1 midpoint of AC. (iii) Collin wants to sit at the position (x, y) such that he 2 is equidistant from Ajay and Biju. Find the relation between x and y.
37.	Case Study – 2
	 Rishi wants to buy a car and plans to take loan from a bank. He pays his total loan amount of Rs.11,80,000 by paying every month starting with the first instalment of Rs.10,000. If he increases the instalment by Rs.1000, every month, answer the following questions. (i) What is the amount paid by Rishi in 30th instalment? 1 (ii) Determine the amount paid by Rishi in 30 instalments. 1 (iii)Find the difference between the amount paid in the 25th instalment and 15th instalments. 2
38.	Case Study – 3
	Trekking : Himalyas trekking club has just hiked to the point A on the south rim of a large canyon, when they spot a climber at point C, trying to reach the point D at the top of the northern rim. The distance AB between the northern and southern walls of the canyon is 150m. The hikers observe an angle of depression of 60° to the bottom F of the north face. The angle of elevation of the climber and the top of the northern rim were found to be 30° and 45°. (Use $\sqrt{3}=1.7$) (i) How high is the southern rim AG of the canyon? 1

(ii) How high is the northern rim FD	? 1
(iii) How much more should the clin	ber climb to
reache the top?	2
[OR]	
The hikers move to the point E on t	he southern face
such that E, A and B are on a str	aight line. Now
they observe the angle of elevation	of the point D to
be 30°. Find the distance AE.	

O.S.D.A.V.Public School, Kaithal Pre-board Exam 2024 Subject : Mathematics Class :X(set-B)

M.M.:- 80

	SECTION - A							
SN	Section A consists of 20 questi	ons of 1 mark each.	Marks					
1.	The largest number which divides 70	0 and 125, leaving remainders 5	and 8 respectively is					
	(a) 65 (b) 13	(c)875	(d) 1750					
2.	The quadratic equation $2r^2 - \sqrt{5}r$	+1-0 has						
	(a) 2 distinct real roots	(b) 2 equal real roo	its					
	(u) 2 distillet real roots	(0) 2 equal teat too						
	(c) No real roots (d) more than 2 real roots							
2								
5.	The zeroes of $5x^{-} - 7x + k$ are si	nA and $\cos A$. Then the value	e of k is 5					
	(a) $\frac{12}{7}$ (b) $\frac{7}{12}$	$(c)\frac{12}{5}$	$(d)\frac{3}{12}$					
			1. 10					
4.	For what value of k , do the equations	3x - y + 8 = 0 and $6x - 3x -$	ky = -16 represent					
	$()$ $\frac{1}{1}$ $()$ $\frac{1}{1}$	$(\alpha)^2$	(d) - 2					
	(a) $\frac{1}{2}$ (b) $-\frac{1}{2}$	(0)2	(u) - 2					
5	If the distance of the point (A, a) from	n the r-axis is half its distance	from the v_{-} axis then a is					
5.	equal to $(4, a)$ from		a nom the y axis, then a is					
	(a) 4 (b) 8	(c)2	(d)6					
6.	In two triangles DEF and PQR , $\angle D$	$= \angle Q$ and $\angle R = \angle E$, then	which of the following is					
	NOT true?	· ·	C					
	(a) $\frac{EF}{DD} = \frac{DF}{DD}$ (b) $\frac{DE}{DD} = \frac{EF}{DD}$	$-$ (c) $\frac{DE}{OP} = \frac{DF}{OP}$	$(d)\frac{EF}{BB} = \frac{DE}{BB}$					
	CY RP QP CY PQ RP	V QR QP	C RP QR					
7.								
	In the figure. $\triangle ABC$ is right angled	at C. D is the mid-point of	A					
	BC. Then $\frac{\cot x}{3}$ =		AP					
	cot y	(h) 1	,v°					
	(a) $\frac{1}{2}$ (b) 2 (c $\sqrt{3}$	$(d)\overline{\sqrt{3}}$						
			B D C					
0								
ð.								

	In the figure, $CD = 4cr$ $\cos A - sir$ $(a)\frac{5}{12}$	re, $\angle ACB =$ m, BD = 3cm n A = (b) $\frac{5}{13}$	90 [°] , ∠ <i>BDC</i> n, AC = 12cr (c) $\frac{7}{12}$ ($= 90^{\circ}$ n. Then A^{\sim} $(d) \frac{7}{13}$	Dere	C 1 B	
9.	Two line s P such tha $\angle APB =$ (a)50°	egments AC t PA = 6cm 50° and $\angle CL$ (b) 30°	and BD inte , PB = 3cm $DP = 30^{\circ}$. Th (c) 60°	rsect each oth , PC = 2.5cm hen $\angle PBA$ is (d) 100°	er at the point , PD = 5cm , equal to	A 50° B	2.5 cm C
10.	If $\triangle ABC$ of $\triangle ABC$ (a)18cm	$\sim \triangle \text{DEF}$ suc is (b)	h that DE = 3 20 <i>cm</i>	cm , EF = 2cr (c) 12	n , DF = 2.5 c 2 <i>cm</i>	m, BC = 4cm (d) $15cm$	then perimeter
11.	In the give at the poin (a)50°	n figure PQ is t B. If ∠ <i>AOB</i> (b) 40°	s a tangent to $= 100^{\circ}$, the (the circle with n ∠ <i>ABQ</i> is c) 60°	centre 'O' (d) 80°	P B Q	A
12.	If the perim (a) $\frac{36}{7}$ cm	eter of a semi (b) •	$rac{5}{6}$ cm	ctor is 66cm, (c) 22	then the radiu L <i>cm</i>	ts of the protra (d) 42 <i>cm</i>	ector is
13.	The ratio of (a) $6: \pi$	the volume o (b)	f a cube to tha 2 : 3	t of a sphere, (c) 3	which will exa : 2	actly fit inside (d) π : 6	the cube is
14.	If the differe (a) 12	ence of mode (b) 2	and median of 24	f a data is 24, (c) 8	then the differ	rence of media (d) 36	an and mean is
15.	If the circur (a) 9 : 4	nferences of t (b)	wo circles are 4 : 9	in the ratio 4 (c) 2	: 9, then the r : 3	atio of their ar (d) 16 : 8	eas is 31
16.	In the follow modal class	ving distributi is	on, the sum of	f lower limit o	f median class	s and the uppe	r limit of the
	Class	10-20	20-30	30-40	40 - 50	50 - 60	60 - 70
	Frequenc y	1	3	5	9	7	3

	(a) 80	(b) 70	(c) 90	(d) 60		
17.	A die is rolled twice	e. The probability that 5 w	ill not come up either tir	ne is		
	$(a)\frac{11}{36}$	(b) $\frac{11}{3}$	(c) $\frac{13}{36}$	(d) $\frac{25}{36}$		
18.	If $3\cos\theta = 2\sin\theta$, then the value of $\frac{4\sin\theta - 3\cos\theta}{2\sin\theta + 6\cos\theta}$ is					
	(a) $\frac{1}{8}$	(b) $\frac{1}{3}$	(c) $\frac{1}{2}$	$(d)\frac{1}{4}$		
	Direction for quest Assertion (A) is foll	tions 19 & 20: In question lowed by a statement of Ro	numbers 19 and 20, a s eason (R). Choose the co	tatement of orrect option.		
19.	Assertion : If produ Reason : HCF is al	act of two numbers is 578 ways a factor of LCM.	0 and their HCF is 17, t	hen their LCM is	340.	
	(a) Both Assertion ((A) and Reason (R) are tru	e and Reason (R) is the	correct explanation	n of	
	(b) Both Assertion	(A) and Reason (R) are tr	ue but Reason (R) is not	the correct explar	nation of	
	(c) Assertion (A) is (d) Assertion (A) is	true but Reason (R) is false but Reason (R) is true	ю.			
20.	Assertion : The tw	o vertices of a triangle are ΔABC is $(5 -2)$	e A(6, 3) and B($-1, 7$)	and its centroid is	s G(1,5).	
	Reason : The centre	oid of triangle formed by t	he points A (x_1, y_1) ,			
	$B(x_2, y_2)$ and $C(x_3, y_2)$	(y_3) is $\left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_3}{3}\right)$	$\left(\frac{2^{+y_3}}{2}\right)$			
	(a) Both Assertion Assertion (A).	(A) and Reason (R) are t	true and Reason (R) is	the correct explan	nation of	
	(b) Both Assertion Assertion (A).	(A) and Reason (R) are tr	ue but Reason (R) is not	the correct explan	nation of	
	(c) Assertion (A) is (d) Assertion (A) is	true but Reason (R) is fals false but Reason (R) is tru	ie. Ie			
		SECTIO	N - B			
	Sectio	on B consists of 5 que	stions of 2 marks ea	ch.		
21.	Find the value(s) of I unique solution.	k so that the pair of equation	ns x + 2y = 5 and 3x + ky	r + 15 = 0 has a	2	
22.	x .1 .0				2	
	In the figure, $\frac{AO}{CO} = \frac{BO}{DO} = -$ AB = 5cm. Find D	$\frac{1}{3}$ and C.	D	B		
23.	In the figure, AB is and AT is a tangen	s a diameter of a circle wit t. If $\angle AOQ = 58^\circ$, find $\angle AOQ = 58^\circ$	h centre O ATQ.		2	

24		2				
	The diameter of the driving wheel of a bus is 140 cm. How many revolutions					
	per minute must the wheel make in order to keep a speed of 66 km per hour ?					
25.		2				
	If $2\sin 3x = \sqrt{3}$, find the value of $\tan (x + 25)^0$					
	Section C					
	Section C consists of 6 questions of 3 marks each.					
26.	Prove that $6 + \sqrt{3}$ is irrational.	3				
27.	Find the zeroes of the polynomial $4x^2+4x-3$ and verify the relationship between the zeroes and the coefficients.	3				
28.	The students of a class are made to stand in rows. If 4 students are extra in a row there would be 2 rows less. If 4 students less in a row there would be 4 rows more. Find the number of students in the class	3				
29.	Prove that $\frac{1}{secA - tanA} - \frac{1}{cosA} = \frac{1}{cosA} - \frac{1}{secA + tanA}$	3				
30.	In the given figure, a triangle ABC is drawn to circumscribe a circle of radius 2 cm such that the segments BD and DC into which BC is divided by the point of contact D, are of lengths 4 cm and 3 cm respectively. If the area $\Delta ABC = 21 \text{ cm}^2$ then find the lengths of sides AB and AC.	3				
31.	From a pack of 52 cards, a card is chosen at random . Find the probability of getting a) a black king b) a jack c) a red queen	3				
	Section D					
	Section D consists of 4 questions of 5 marks each.					
32.	A pole has to be erected at a point on the boundary of a circular park of diameter 10m in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 2m. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?	5				

							_	
33.							5	
	Prove Basic pr In the figure,D Using the abov	Prove Basic proportionality theorem. In the figure,DE BC, AD=3cm, DB=4cm, AE=2cm Using the above theorem, Find the length of Ec?						
	в∠							
34.	From a solid c of same heigh area of the rer	ylinder of hei t and same b maining solid	ght 7 cm and base diamete	d base diame er is hollowed	ter 12 cm, a out. Find th	a conical cavity e total surface	5	
35.	A survey regarding the heights (in cm) of 50 girls of class X of a school was							
	conducted and t	the following of	lata was obtai	ned.				
	Height (in cm) $100 - 120$ $120 - 140$ $140 - 160$ $160 - 180$ $180 - 200$							
	No. of girls	4	6	11	15	8		
	Find the mean and mode of the above data.							
		Case study	hased mes	stions are co	mnulsory			
36	Case Study – 1	Case study	buseu ques		<u>inpuisor y.</u>			
20.	Car pooling	is the sharing	ng of car	10				
	journeys by p	eople who tra	avel to the	9				
	same destinat	ion every day	y. It is an	8	P			
	environmental	ly friendly wa	y to travel.	7				
	I hree friends	Priya, Quinn	and Rakhi	6				
	noints P O and	d R respectivel	v They all	5				
	work in offic	es located in	the same	4				
	building situat	ed at the point	0.	3				
				2				
				0-1	2 3 4 5	6 7 8 9 10		
	Based on the ab	ove information	on, answer the	e following que	estions.			
	(i) They decid Find the coord	e to meet at the inates of the c	ne café locate afé.	d at the centro	id of $\triangle PQR$	1		
	(ii) Find the di	stance betwee	n the societies	of Priya and (Quinn.	1		
	(iii) Find the p	oints of trisect	ion of the line	e segment PR.		2		
1								

37.	Case Study – 2
	Amit was playing a number card game. In the game, some cards marked positive and some negative are
	arranged in the decreasing order in a row such that
	they are following an Arithmetic Progression. On
	his first turn, Amit picks up 6 th and 14 th cards and
	finds their sum to be -76. On the second turn he
	picks up 8^{in} and 16^{in} cards and finds their sum to be -96 .
	Based on the above information, answer the following questions.
	i) What is the difference between the numbers on any two consecutive cards? (1)
	ii) What is the number on the first card? (1)
	iii) Find the sum of numbers on the first 15 cards? (2)
38.	Case Study – 3
	Radio frequency towers are backbone of wireless
	wires from the point O on the ground to the points A
	and B on the tower. Distance between the base of the
	tower and point O is 36m. From the point O, the angle
	of elevation of the point B is 30° and the angle
	elevation of the point A is 45°.
	Based on the above information answer the following questions
	i) Draw a neat labelled diagram to show the above situation. (1)
	$\begin{array}{l} \text{(1)} \\ \text{(ii) Find the height of point B.} \\ \text{(iii) Find the length of the using from the point O to the point A} \\ \end{array}$
	(2) (2) (2)

Pre-Board Question Paper(2024-25)				
Marking Scheme				
Time Allowed: 3 Hours Maximum Marks: 80				
	Set-A			
	SECTION - A			
1	(b) 2	1		
2	$(0)^2$	1		
2.	$\begin{array}{c} (b) x - 4x + 1 = 0 \\ \hline (b) 12 \end{array}$	1		
3.	(0) 12	1		
4.	(a) $\frac{1}{2} = \frac{1}{2}$	1		
5.	(c) m=2, n=3	1		
6.	(d) isos & similar	1		
7.	(a) $\frac{1}{2}$	1		
8.	(c) 2	1		
9.	(b) 20°, 30°	1		
10.	(d) 2	1		
11.	(b) 11 : 14	1		
12.	(d) 55°	1		
13.	(a) 3	1		
14.	(b) 4 : 3	1		
15.	(a) $154 \ cm^2$	1		
16	(b) 10	1		
17.	(b) $\frac{3}{4}$	1		
18.	(c) 3	1		
19.	(a)	1		
20.	(c)	1		
	SECTION - B			

21.	The given system of equations can be written as	
	x + 2y - 5 = 0 3x + ky + 15 = 0	
	This system of equation is of the form	
	$a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$	
	where, $a_1 = 1, b_1 = 2, c_1 = -5$ and $a_2 = 3, b_2 = k, c_2 = -15$	1/2
	The given system of equations will have a unique solution, if	
	$\frac{1}{3} \neq \frac{2}{k} \Rightarrow k \neq 6.$	1+1/2
22.	In $\triangle AOB \& \triangle COD$	
	$\frac{OA}{OC} = \frac{OB}{OD} (data) \qquad \qquad A \qquad B$	
	$\angle AOB = \angle COD (VOA)$	
	$\therefore \Delta AOB \sim \Delta COD (SAS)$	1
	$\therefore \frac{AB}{CD} = \frac{OA}{OC}$	1/2
	$\frac{4}{CD} = \frac{2}{3} \Rightarrow CD = \frac{4 \times 3}{2} = 6cm$	1/2
23.	$\angle BAT = 90^{\circ} (\text{tgt} \perp \text{radius at pt of contact})$	1
	$\angle ABT = \frac{58^{\circ}}{2} = 29^{\circ} (DMT)$	1/2
	$\angle ATB = 180^{\circ} - (90^{\circ} + 29^{\circ}) = 61^{\circ} (AMS)$	1/2
24.	n=5000, n × $2\pi r = 11 \ km$ 5000 × $2\pi r = 11 \times 1000m$	$\frac{1/2}{1/2}$
	$2r = \frac{11 \times 7}{2} = \frac{7}{2}m$	
	5×22 10 ···	
	$\frac{7}{10} \times 100 = 70 cm$	
- 25	3 2	1
25.	A = 10; $\frac{3\sin \sin 30^\circ + 2\cos 60^\circ}{\sqrt{3}\tan 30^\circ - \csc 30^\circ} = \frac{\frac{3}{2} + \frac{3}{2}}{\frac{\sqrt{3}}{2} - 2}$	1 1/2
	$\sqrt{3}$	
	<u>5</u>	1/2
	$ =\frac{2}{-1}=\frac{-3}{2}$	

	SECTION – C	
26.	Proof of $\sqrt{2}$ is irrationalProof of 6 + $\sqrt{2}$ is irrational	2 1
27.	$3x^{2}-5x+2$ Splitting the middle term, we get $=3x^{2}-3x-2x+2$ =3x(x-1)-2(x-1) (3x-2)(x-1)=0 (3x-2)(x-1)=0 Using zero product property, we get	
	$3x-2=0 \Rightarrow x=2/3$ $x-1=0 \Rightarrow x=1$ Therefore, the zeroes of the polynomial are 2/3 and 1. If α and β are two zeroes of a polynomial	1
	$\alpha + \beta = 1 + (\frac{2}{3}) = \frac{5}{3}$ $\alpha + \beta = -\frac{b}{a} = \frac{5}{3}$ $\alpha \beta = 1x(\frac{2}{3}) = (\frac{2}{3})$ $\alpha \beta = \frac{c}{a} = (\frac{2}{3})$ Hence verified.	1

28	Let the number of rows be x and number of students in a row be y. Total students of the class= Number of rows × Number of students in a row = x × y = xy	1/2				
	Case 1 Total number of students = $(x - 1)(y + 3)$ $\Rightarrow xy = (x - 1)(y + 3) = xy - y + 3x - 3$ $\Rightarrow 3x - y - 3 = 0$ $\Rightarrow 3x - y = 3$ (i)	1/2				
	Case 2 Total number of students= $(x + 2)(y - 3)$ $\Rightarrow xy = xy + 2y - 3x - 6$ $\Rightarrow 3x - 2y = -6$ (ii)	1/2				
	Subtracting equation (ii) from (i), $\Rightarrow (3x - y) - (3x - 2y) = 3 - (-6)$ $\Rightarrow -y + 2y = 3 + 6$ $\Rightarrow y = 9$	1/2				
	By substituting value of y in (i), we get $\Rightarrow 3x - 9 = 3$ $\Rightarrow 3x = 9 + 3 = 12$ $\Rightarrow x = 4$	1/2				
	Number of rows = x = 4 Number of students in a row = y = 9 Number of total students in a class = x × y = 4 × 9 = 36	1/2				
29.	$LHS = \frac{1}{cosec \theta - cot\theta} - \frac{1}{sin\theta}$					
	$= \frac{1}{cosec \theta - cot\theta} \times \frac{cosec \theta + cotcot \theta}{cosec \theta + cot\theta} - \frac{1}{sin\theta}$					
	$=\frac{cosec\ \theta+cotcot\ \theta}{cosec^{2}\ \theta-cot^{2}\theta}-\frac{1}{sin\theta}$	1/2				
	$= cosec\theta + cot\theta - cosec\theta = \cot cot\theta$	1/2				
	$RHS = cosec\theta - (cosec \theta - \cot cot \theta)$					
	$= cosec\theta + cot\theta - cosec\theta = \cot cot\theta$					
	LHS = RHS	1				
30.	$s = \frac{x + 6 + x + 9 + 15}{2} = x + 15$	1/2				
	$54 = \sqrt{(r + 15)(9)(6)(r)}$	1				
	$54^{2} = 54x(x + 15) \Rightarrow x^{2} + 15x - 54 = 0$	1/2				
	= (x - 3)(x + 18) = 0 x = 3 or - 18	1				
	$x \neq -18$ as length canot be negative					
	$\therefore AB = 9cm, AC = 12 cm$	1/2				
31.	n(s)=52					

-		
	(a) p(Red Face Card) = $(6/52) = 3/26$	1
	(b) $p(an Ace) = (4/52) = 1/13$ (c) $p(queen) = 1/13$	1
		1
	SECTION - D	
32.	P – Pole, A,B - Gates	1/
	Let $AP = a$ and $PB = b$	⁷ 2
	$\Rightarrow a-b=7 = > a=b+7$	/2
	$AB^{2} = AP^{2} + BP^{2} (by thm)$	
	$13^{2} = a^{2} + b^{2} = (b + 7)^{2} + b^{2}$	1
	$b^2 + 7b - 60 = 0$	1
	(b + 12)(b - 5) = 0 $\Rightarrow b = 5 \text{ or } b = -12$	1 ½
	$b \neq -12$ as distance is not negative $\therefore b = 5, a = 12$	1/2

٦

34.	Given height (of cylinder	= 10 cm			
	Radius of cylinder = 3.5 cm					
	The volume of	f toy= Volui	me of cylinder	-2×		1
	volume of a h	emisphere				2
	$= \pi r^{2} n - (2 \times -$	$\frac{-\pi r^{2}}{3}$				
	$= [\pi(3.5)^2 \times 10^{-3}]$	$[-(2 \times \frac{2}{3} \times \frac{2}{3})]$	$\pi(3.5)^3) = 203$	5.251 cm ³		2
35.	Height (in cm)	No of	~	d - r - A	fd	
	fieight (in ein)	students	λ_{i}	$u_i - x_i$ A	^j ⁱ ^u ⁱ	
		(f_i)				
	120 - 130	2	125	- 20	- 40	
	130 - 140	8	135	- 10	- 80	1
	140 - 150	12	145	0	0	
	150 - 160 160 170	20	155	10	200	
	Σ	f:50	105	20	$\Sigma f d$: 240	
		i			_, _i	
	A=145					1
	$Mean = A + \frac{\Sigma f_i d_i}{\Sigma f}$					
	$= 145 + \frac{240}{50}$					
	50					
	= 149.8					
						1
	Modal class = 150 -	- 160				
	$l = 150, f_0 = 12, j$	$f_1 = 20, f_2 =$	= 8, h = 10			1/
	$Mode = l + (\frac{f_1}{2f_1})$	$\frac{f_0}{f_0}$)×h				72
	$2f_1 - f_0 - f_2$					
	$150 + \begin{bmatrix} 20-12 \\ -12 \end{bmatrix}$					
	$-150 + \left[\frac{40-12-8}{40-12-8}\right] \times 10$					72
	= 154					
	101					
26		1 0) 0	SECTION -	E		
36.	A((-2, 2), B(-2))	1, -3), C	(3,0)		Yt III	
	(1) $\frac{k+1}{k+1} = 0$)			4	
		_ 0 _ > '	2			
	$= - 3k + 2 = 0 = > k = \frac{1}{3}$					

		1
	∴ratio is 2 : 3	
	(2) $\left(\frac{-2+3}{2}, \frac{2+0}{2}\right) = \left(\frac{1}{2}, 1\right)$	
	(3) Let C be (x, y)	
	$AC^2 = BC^2$	
	$(x + 2)^{2} + (y - 2)^{2} = (x + 1)^{2} + (y + 3)^{2}$	1
	x-5y-1=0	
		1+1
37	$a = 10\ 000$ $d = 1000\ S = 11\ 80\ 000$	
	<i>a</i> 10,000, <i>a</i> 1000 <i>b</i> _n 11,00,000	
	(i) $a_{30} = a + 24d = Rs. 39,000$	1
	(ii) $S_{30} = 15(20,000 + 29,000) = 15 \times 49,000 => Rs. 7,35,000$	1
	(iii) $a_{25} - a_{15} = a + 24d - a - 14d = 10d = Rs. 10,000$	2
38.	i) $\tan 60^\circ = \frac{BF}{AB} \Rightarrow \sqrt{3} = \frac{BF}{150} \Rightarrow BF = 150\sqrt{3} = 150 \times 1.7 = 522 m$	
	\therefore Height of the southern rim = 255m	
	ii) $\tan \tan 45^\circ = \frac{BD}{AB} \Rightarrow BD = AB = 150$	
	$\therefore DF = DB + BF = 150 + 255 = 405m$	
	iii) $\tan 30^\circ = \frac{BC}{AB} \Rightarrow BC = \frac{150}{\sqrt{3}} = 50\sqrt{3}$	1
	$= 50 \times 1.7 = 85m$ G	
	$\therefore CD = BD - BC = 150 - 85 = 65m$	

Pre-Board Question Paper(2024-25)		
	Marking Scheme	
	Maximum Marks: 80	
	Set-B	
	SECTION - A	
	Choose and write the correct option in the following questions (b) 13	1
2	(c) no real roots	1
2.		1
3.	$(c) \frac{1}{5}$	1
	(c) 2	1
4.		1
5.	(c) 2	1
6	(b) $\frac{DE}{EF} = \frac{EF}{EF}$	1
7	$(0) \frac{PQ}{PQ} = \frac{RP}{RP}$	1
/.	(0)2	1
8.	$(d) \frac{7}{7}$	1
9	$(d) \frac{13}{100^{\circ}}$	1
10	(d) 15 cm	1
		1
11	(a) 50°	1
	(b) 77/6	1
12		1
13	(a) 6 : π	1
	(a) 12	1
14	(a) 12	1
15	(d) 16:81	1
		1
16	(C)90	1
. 17	$(d)\frac{25}{25}$	1
	1	
18	(b) $\frac{1}{3}$	
19	(b) Both A & R are true but R is not the correct explanation of A.	1
20	(d) A is false but R is true.	1
	SECTION - B	
1		

21	The given system of equations can be		
	x + 2y - 5 = 0		
	3x + ky + 15 = 0		
	This system of equation is of the form		
	$a_1x + b_1y + c_1 = 0$		
	$a_2x + b_2y + c_2 = 0$		
	where, $a_1 = 1, b_1 = 2, c_1 = -5$ and $a_2 = 3, b_2 = k, c_2 = -15$		1/2
	The given system of equations will have a unique solution, if		
	$\frac{1}{3} \neq \frac{2}{k} \Rightarrow k \neq 6.$		1+1/2
22	In $\triangle AOB \& \triangle COD$		
•	$\frac{\partial A}{\partial C} = \frac{\partial B}{\partial D}$ (data) A		
	$\angle AOB = \angle COD (VOA)$	1	
	$\therefore \Delta AOB \sim \Delta COD (SAS)$		1
	AB = OA		1/
	$\cdots _{CD} = oc$		/2
	$\frac{5}{CD} = \frac{1}{2} \Rightarrow CD = 5X3 = 15 cm$		
			1/2
23	$\angle BAT = 90^{\circ}$ (tgt \perp radius at pt of contact)		1
	$\angle ABT = \frac{58^{\circ}}{2} = 29^{\circ} (DMT)$		1/2
	$\angle ATB = 180^{\circ} - (90^{\circ} + 29^{\circ}) = 61^{\circ} (AMS)$		1/2
	$n=5000, n \times 2\pi r = 11 km$		1/2
24	$5000 \times 2\pi r = 11 \times 1000m$		1/2
•	$2 = 11 \times 7 = 7$		
	$2r - \frac{1}{5 \times 22} = \frac{1}{10} m$		
	$\frac{7}{100} \times 100 = 70 cm$		
	$_{10}$ ×100 – 70 cm		1
25	$A = 10$, $3\sin 30^{\circ} + 2\cos 60^{\circ}$ $-\frac{3}{2} + \frac{2}{2}$		¹ / ₂ +1
	$A = 10, \frac{1}{\sqrt{3} \tan 30^\circ - \cos ec 30^\circ} - \frac{\sqrt{3}}{\frac{\sqrt{3}}{\sqrt{3}} - 2}$		
	5		
	$ =\frac{2}{-1}=\frac{3}{2}$		1/2
	SECTION – C		

26	⁶ Proof of $\sqrt{2}$ is irrational			
	Proof of 6 + $\sqrt{2}$ is irrational			
27				
21	4x ² + 4x - 3 splitting middle terms			
	$4x^2 - 2x + 6x - 3 = 0$			
	$\Rightarrow 2x(2x-1) + 3(2x-1) = 0$			
	$\Rightarrow (2x+3)(2x-1) = 0$			
	So $x = \frac{-3}{2} \& x = \frac{1}{2}$	1		
	So $\left(-\frac{3}{2},\frac{1}{2}\right)$ are the roots of the given equation.			
	$\alpha + \beta = \frac{-b}{a}$			
	$\Rightarrow \frac{-3}{2} + \frac{1}{2} = \frac{-2}{2} = -1$	1		
	$\frac{-b}{a} = \frac{-4}{4} = -1$			
	$\alpha\beta = (\frac{-3}{2})(\frac{1}{2}) = \frac{-3}{4} = \frac{c}{a}$	1		
	So $\alpha + \beta = \frac{-b}{a} & \alpha \beta = \frac{c}{a}$ Hence proved.	1		
28	Let the number of rows be x and the number			
	of students in each row be y.			
	Total number of students = xy	1/2		
	(x - 2)(y + 4) = xy	, 2		
	\Rightarrow xy + 4x - 2y - 8 = xy			
	$\Rightarrow 4x - 2y = 8 \dots (1)$	1/2		
	and $(x + 4) (y - 4) = xy$			
	xy - 4x + 4y - 16 = xy			
	$\Rightarrow -4x + 4y = 16 \dots (2)$	1/2		
	From eqn. (1) and (2) $4x = 2x = 4x \pm 4x = 24$			
	4x - 2y - 4x + 4y - 24 $2y = 24 \rightarrow y = 12$	1/2		
	and $4x - 2 \times 12 = 8$			
	$\Rightarrow 4x = 8 + 24 = 32 \Rightarrow x = 8$	1/2 1/		
	Total no. of students = $12 \times 8 = 96$.	72		

29	$\frac{1}{\cos(4) \tan(4)} - \frac{1}{\cos(4)} = \frac{1}{\cos(4)} - \frac{1}{\cos(4) \tan(4)}$		
•	$\frac{1}{1}$		
	$\frac{\text{LHS}}{\text{sec A} - \tan A} = \frac{1}{\cos A}$		
	$\frac{1}{\sec A - \tan A}, \frac{\sec A + \tan A}{\sec A + \tan A} - \frac{1}{\cos A}$		1/2
	$\frac{\sec A + \tan A}{\sec^2 A - \tan^2 A} = \frac{1}{\cos A}$		1⁄2
	$\frac{\sec A + \tan A}{1} - \frac{1}{\cos A}$		1⁄2
	= tan A		
	$RHS\frac{1}{\cos A} - \frac{1}{\sec A + \tan A} + \frac{\sec A - \tan A}{\sec A - \tan A}$		1/2
	$\frac{1}{\cos A} - \frac{\sec A - \tan A}{\sec^2 A - \tan^2 A}$		1/2
	$\frac{1}{\cos A}$ - sec A - tan A		1/2
	$= \tan A$		
	\therefore LHS = RHS		
30			
	We know that tangent segments to a circle from		
	the same external point are congruent		
	Now we have		
	AE = AF, BD = BE = 4 cm and CD = CF = 3 cm		1/2
	Now		
	$Area(\Delta ABC) = Area(\Delta BOC) + Area(\Delta AOB) + Area(\Delta AOC)$		1⁄2
	$\Rightarrow 21 = \frac{1}{2} \times BC \times OD + \frac{1}{2} \times AB \times OE + \frac{1}{2} \times AC \times OF$		1
	$\Rightarrow 42 = 7 \times 2 + (4 + x) \times 2 + (3 + x) \times 2$		I
	$\Rightarrow 21 = 7 + 4 + x + 3 + x$ $\Rightarrow 21 = 14 + 2\pi$		
	$\Rightarrow 2x = 7$		1/
	$\Rightarrow x = 3.5 cm$		/2
	$\therefore AB = 4 + 3.5 = 7.5 cm and AC = 3 + 3.5 = 6.5 cm$		1/2
31	n(s)=52		
•	(c) $r(Dl_{1}) = \frac{2}{12}$		
	(a) p(Black King) $-\frac{1}{52} = 1/26$		1
	(b) $p(a \text{ jack}) = 4/52=1/13$ (c) $p(red queen) = 2/52=1/26$		1
	$[(0)] p(100 quotil) = \Delta (32 1/20)$		

	SECTION - D		
32	P – Pole, A,B - Gates		
	Let $AP = a$ and $PB = b$		1⁄2
	\Rightarrow a-b =2 = > a=b+2		1
	$AB^{2}=AP^{2}+BP^{2}$ (by thm) $100=a^{2}+b^{2}=(b+2)^{2}+b^{2}$		1
	$b^2+2b-48=0$		1
	b=6 or b=-8		1
	$b \neq -8$ as distance is not negative		1 1/2
	∴b=6, a=8		/2
33	Given: A triangle ABC in which a line parallel to side BC intersects other two sides AB and AC at D and E respectively.		
	To prove: $\frac{AD}{DB} = \frac{AE}{EC}$. Construction: Join BE and CD and draw DM \perp AC and EN \perp AB.		1/2
	Proof: area of \triangle ADE (= $\frac{1}{2}$ hase x height) = $\frac{1}{2}$ AD x EN		
	(Taking AD as base)		1⁄2
	So, $ar(BDE) = \frac{1}{2}DB \times EN$, [The area of \triangle ADE is denoted as ar (ADE)].		
	Similarly, $ar(BDE) = \frac{1}{2}DB \times EN$,		1⁄2
	$ar(ADE) = \frac{1}{2}AE \times DM and ar(DEC) = \frac{1}{2}EC \times DM.$ (Taking AE as base) $\frac{ar(ADE)}{ar(BDE)} = \frac{\frac{1}{2}AD \times EN}{\frac{1}{2}DB \times EN} = \frac{AD}{DB}$ (i)		1∕2
	$\frac{\operatorname{ar(ADE)}}{\operatorname{ar(DEC)}} = \frac{2}{\frac{1}{2}} \frac{AE \times DM}{EC \times DM} = \frac{AE}{EC}$ and $\operatorname{ar(BDE)} = \operatorname{ar(DEC)} \dots (iii)$		11⁄2
	[Δ BDE and DEC are on the same base DE and between the same parallels BC and DE.] Therefore, from (i), (ii) and (iii), we have:		1/2
	$\frac{AD}{DB} = \frac{AE}{EC}.$		
	EC = 8/3		1
34			
•			

Height (h) of cylindrical part = height (h) of the conical part = 7 cm	
Diameter of the cylindrical part = 12 cm	
Therefore, Radius (r) of the cylindrical part = $\frac{12}{2}$ = 6 cm	
So, Radius of the conical part = 6 cm	
Slant height (1) of conical part $=\sqrt{r^2 + h^2}$ cm	
$=\sqrt{6^2+7^2}$	
$=\sqrt{36+49}$	
= √85	
≈ 9.22 CM.	1
The total surface area of the remaining solid = CSA of the cylindrical part + CSA of the conical part + Base area of the circular part	
$= 2\pi rh + \pi rl + \pi r^2$	
$= 2 \times \frac{22}{7} \times 6 \times 7 + \frac{22}{7} \times 6 \times 9.22 + \frac{22}{7} \times 6 \times 6$	1½ 1½
= 264 + 173.86 + 113.14	. –
$= 551 \text{ cm}^2$	1
7 cm	
12 cm	

35 CI fi ni di= xi-a fidi 100-120 4 110 -40 -160 120-140 6 280 130 - 20 - 120 1+1 140-160 41 150=a 0 0 160-180 15 170 20 300 +620 180-200+8 190 40 320 74 Total 340 X = a+ Efici Efi 17085 = 150 + 340 1⁄2 44 231 \$ 150 + 85 = 150 + 7.72 11 3 150.0 + 7.72 1⁄2 157.72 157.72 / > An Þ 1

	4	$\frac{160 \text{ h}=20 \text{ F}_{1}=15 \text{ F}_{0}=11 \text{ F}_{2}=8}{\text{Mode}=1+\left[\frac{\text{F}_{1}-\text{F}_{0}}{2\text{F}_{1}-\text{F}_{0}-\text{F}_{2}}\right]}$ $=160+\left[\frac{15-11}{2(15)-11-8}\right]$ $=160+4 \text{ x} 20$ $30-19$ $=160+4 \text{ x} 20$ 11		
		= 160+7.2		
		= 167.2 Ams		
	SECTION - E			
36	i)	$\left(\frac{2+7+5}{3}, \frac{8+7+3}{3}\right)$	1/2	
		$=\frac{14}{3}, \frac{18}{3} = \left(\frac{14}{3}, 6\right)$	1/2	
	ii)	$\sqrt{(7-2)^2+(7-8)^2}$		
		$=\sqrt{25 + 1}$	1/2	
		=\sqrt{26}	1/2	
	iii)	Mid pt $(\frac{9}{2}, \frac{15}{2})$	1/2	
		Median = $\sqrt{\left(5 - \frac{9}{2}\right)^2 + \left(3 - \frac{15}{2}\right)^2}$	1	
		$=\sqrt{\frac{1}{4}+\frac{81}{4}}=\frac{\sqrt{82}}{2}$	1/2	
		[OR]	/2	
		A divides PR in the ratio 2 : 1		

	A is $(\frac{10+2}{3}, \frac{6+8}{3}) = (4, \frac{14}{3})$ B is the midpoint of AR.		1
	B is $(\frac{9}{2}, \frac{3}{3}+3)$		
	$=\left(\frac{9}{2}, \frac{23}{6}\right)$		1
37. (i) (ii)		Let the numbers on the cards be a, a+d, a+2d, (a + 5d) + (a + 13d) = -76 2a + 18d + -76 a + 9d = -38(1) (a + 7d) + (a + 15d) = -96 2a + 22d = -96	1⁄2
		a + 11d = -48 (2) On solving (1) & (2) we get 2d = -10 d = -5	1/2
			1/2
		a + 9(-5) = -38 a = 7 First card = 7	1/2
(iii)	$a_9 = a + 8d$	1
		7 + 8(-5) = -33 $a_{15} = a + 14d$ 7 + 14(-5) = -63	$\frac{1}{2}$ $\frac{1}{2}$
		-33 + (-63) = -129	17
		[OR]	$\frac{1}{2}$ $\frac{1}{2}$
		AP is 7, 2, -2,	1/2
		$s_n = \frac{n}{2} [2a + (n-1)d]$	1/2
		$s_{15} = \frac{1}{2} [2(7) + 14(-5)]$ $s_{15} = -420$	
38.	(i)		1

