

O.S.DAV Public School Kaithal

May Test of Core Maths

Class – XI (2025-26)

Set - A

Time: 1 hour 30 mins.

M.M. 40

Instructions:

- 1. All questions are compulsory.
- 2. This question paper has 5 Sections. Section A has 11 questions of 1 mark each. Section B has 3 Questions of 2 marks each. Section C has 3 questions of 3 marks each. Section D has 2 questions of 5 marks each. Section E has 1 case study question of 4 marks .

Section - A

Q1 If $U = \{1, 2, 3, \dots, 12\}$, $A = \{8, 9, 10, 11\}$ and $B = \{1, 2, 3, 4, 5, 7, 8, 9\}$ then (A - B)' is

- a) $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 12\}$ b) $\{6, 8, 9, 10, 11\}$ c) $\{1, 4, 7, 8\}$ d) \emptyset

- Q2 The range of the function $f(x) = x^2 + 2$, $x \in R$
 - a) $(-\infty, \infty)$
- b) $[2, \infty)$
- c) $(-\infty, -2]$
- d) $(-\infty, 0)$
- Q3 If $P = \{2, 7\}$ and $Q = \{4, 8\}$ then number of relations from set P to set Q are
 - a) 16
- b) 64
- c) 63
- Q4 The domain of the function $f(x) = \frac{x^2 8x + 12}{x^2 + 2x + 1}$ is
 - a) $R \{2, 6\}$
- b) $R \{1\}$ c) $R \{-1\}$ d) $R \{0\}$
- Q5 The value of [-9.3] [9.6] is (where [] stands for greatest integer function)
 - a) -18
- b) -19
- c) -20
- d) 0
- Q6 Let the set $A = \{x: x \text{ is a letter in the word "MATHEMATICS"}\}$, then the proper subsets of A is:
 - a) 2^{11}
- b) 2¹¹ 1
- c) 2^8
- d) $2^8 1$
- Q7 The value of $\cot \frac{\pi}{6} + \csc \frac{-\pi}{4} + \sec \frac{-\pi}{4} + \tan \frac{-\pi}{3}$ is
 - a) 0
- b) 6
- c) 4
- d) 2

- Q8 The radian measure of 520° is
 - a) $\frac{5\pi}{6}$ b) $\frac{26\pi}{9}$ c) $\frac{19\pi}{72}$ d) $\frac{35\pi}{9}$

- $Q9 A \cap A' = \underline{\hspace{1cm}}$
 - a) A
- b) Ø
- c) A'
- d) U
- Q10 If $(\frac{x}{3} + 1, y \frac{2}{3}) = (\frac{5}{3}, \frac{1}{3})$ then the value of x and y are
 - a) x = 2, y = 1 b) x = 1, y = 1
- c) x = 1, y = 2 d) x = 2, y = 2

- Q11 If A and B are any two non -empty sets then choose the correct option for A and B as disjoint sets:
 - a) $A B = \emptyset$
- b) $A \subset B$
- c) $A \cap B = \emptyset$
- $d) A \cup B = \emptyset$

Section - B

 $Q12 \text{ If U} = \{\,5,\,6,\,7,\,8,\,9,\,10,\,11,\,12\}, \quad A = \{\,7,\,8,\,9,\,10\} \text{ and B} = \{5,8,\,9,\,10,11,\,12\}.$

Verify that $(A \cap B)' = A' \cup B'$

- Q13 For any sets A and B, using properties show that $A \cup (B A) = A \cup B$
- Q14 Convert 6 radians into its degree measure.

Section - C

Q15 Define a relation R on the set of natural numbers N by

 $R = \{ (x, y) : y = x + 5, x \text{ is a natural number less than 4 and } x, y \in \mathbb{N} \}$

- i) Depict this relation in its roster form.
- ii) Write the domain of R.
- iii) Write the range of R.
- Q16 Let A and B be sets. If $A \cap X = B \cap X = \emptyset$ and $A \cup X = B \cup X$ for some set X, show that A = B.
- Q17 If in two circles arcs of same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Section - D

- Q18 Find the domain and range of the function : $f(x) = \sqrt{x^2 81}$
- Q19 a) If cot $x = \frac{-5}{12}$, x lies in second quadrant, find the values of other five trigonometric ratios.
 - b) Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write A x B. How many subsets will A x B have? List them.

Section - E

Q20 After explaining operations on sets, Mathematics teacher in class wrote three sets as

 $A = \{2, 3, 4, 5\}$, $B = \{6, 7, 8\}$ and $C = \{x : x \text{ is prime number less than } 10\}$. She asked the students that the following questions will judge how much you have understood.

- i) $A \cup B$
- ii) C B
- iii) $(A \cap C) B$
- iv) $(A \cup B) \cap C$

O.S. DAV Public School Kaithal

May Test of Core Maths

Class - XI (2025-26)

Set - B

M.M. 40

ın	CTI	rıı	CT	\mathbf{a}	ns	
	ЭLI	u	LLI	v	113	

1. All questions are compulsory.

Q1 The domain of the function $\frac{1}{\sqrt{3-r}}$ is:

2. This question paper has 5 Sections. Section A has 11 questions of 1 mark each. Section B has 3 Questions of 2 marks each. Section C has 3 questions of 3 marks each. Section D has 2 questions of 5 marks each. Section E has 1 case study question of 4 marks.

Section - A

a) $(-\infty,3)$	b) [-3,3]	c) $(0,3)$	d) (-∞,	3]	
Q2 If U = { 1, 2, 3,	$A = \{ 8, 9 \}$, 10, 11} and	$B = \{1, 2, 3, 4, 5, \dots\}$	7, 8, 9	}
then $(B - A)'$ is					
a) { 1, 2, 3, 4, 5, 7}	b) { 6, 8, 9, 10, 1	1, 12}	c) { 1, 4, 7, 8}	d)	Ø
Q3 The value of $\tan(-\frac{15\pi}{4})$) is				

a) 2^{7}

b) -1 c) $\frac{1}{2}$ d) $\frac{1}{5}$ a) 1

b) $2^5 - 1$

- Q4 The range of the function f(x) = 2 3x, $x \in R$, x > 0
 - a) $(-\infty,2)$ b) $[2,\infty)$ c) $(-\infty, -2]$ d) $(-\infty, 0)$
- Q5 Let the set $A = \{x: x \text{ is a letter in the word "AVERAGE"}\}$, then the proper subsets of A is:

c) 2^5

d) $2^7 - 1$

- Q6 The value of [7.77] [-7.3] is (where [] stands for greatest integer function)
- b) -19 a) -18 c) 15 d) 0
- Q7 If A and B are any two non -empty sets then choose the correct option for A and B as disjoint sets:
 - a) $A B = \emptyset$ b) $A \subset B$ c) $A \cap B = \emptyset$ d) $A \cup B = \emptyset$
- $Q8 A \cup A' =$ a) A b) Ø c) A' d)
- Q9 The radian measure of 450° is
 - a) $\frac{5\pi}{6}$ b) $\frac{26\pi}{9}$ c) $\frac{19\pi}{72}$ d) $\frac{5\pi}{2}$
- Q10 Let $A = \{1, 2, 3, \dots, 14\}$. Define a relation R from A to A by

 $R = \{ (x, y) : 3x - y = 0, x, y \in R \}$ then the domain of the relation R is a) A b) $\{1, 2, 3, 4, 5, 6\}$ c) $\{1, 2, 3, 4\}$ d) $\{3, 6, 9\}$

Q11 The angle in radians through which a pendulum swings if its length is 75 cm and the tip describes an arc of length 10 cm is

a) $\frac{15}{2}$

b) $\frac{5}{2}$

c) $\frac{2}{15}$

d) $\frac{2}{5}$

Section - B

Q12 Convert 4 radians into its degree measure.

Q13 If $U = \{5, 6, 7, 8, 9, 10, 11, 12\}, A = \{7, 8, 9, 10\} \text{ and } B = \{5, 8, 9, 10, 11, 12\}.$

Verify that $(A \cap B)' = A' \cup B'$

Q14 For any sets A and B, using properties show that $(A - B) \cup (A \cap B) = A$

Section - C

Q15 Draw the graph of Greatest Integer Function. Also write its domain and range.

Q16 If in two circles arcs of same length subtend angles 45° and 75° at the centre, find the ratio of their radii.

Q17 Let A ,B and C be sets such that $A \cap C = A \cap B$ and $A \cup C = A \cup B$ then show that C = B.

Section - D

Q18 Find the domain and range of the function : $f(x) = \frac{x^2}{1+x^2}$

Q19 a) If $\cos x = \frac{-3}{5}$, x lies in third quadrant, find the values of other five trigonometric ratios.

a) Let $A = \{7, 8\}$ and $B = \{5, 6\}$. Write A x B. How many subsets will A x B have? List them.

Section - E

Q20 After explaining operations on sets, Mathematics teacher in class wrote three sets as

 $A = \{2, 3, 4, 5\}, B = \{6, 7, 8\}$ and $C = \{x : x \text{ is prime number less than } 10\}$. She asked the students that the following questions will judge how much you have understood.

i) $A \cup B$

ii) C – B

iii) (A \cap C) – B

iv) $(A \cup B) \cap C$

O.S.D.A.V. Public School Kaithal May Unit Test 2025-26 Class - XI
Subject - Core Maths
Value Points / Key Points
Section A Sct-A-Q. Nb. a)6) (2,0) c) R- 8-13 2611/9 \$ \(\frac{\psi}{2}, \quad \frac{\psi}{2}\) \(\text{Ang} \quad \frac{\psi}{2}\) Section-B. LMS-1 ANB = [8,9,10] (ANB) = {5,6,7,11,12} Rhs.) $A' = \{5, 6, 11, 12\}$ $B' = \{6, 7\}$ $A' \cup R' = \{5, 6, 7, 11, 12\}$ $A \cup H' \cdot S' = RHS$ LMS AUB-A) = AU (BNA') 13 = (AVB) n (AVA') = ANB) NU = AUB = Rhs 6 radians = (6 x 180) - (6 x 180 x7) 14

= (3780) = 343° (7 x 60) . = 343° 38' 10" R={(1,6), (2,7), (3,8)} 0/5 Domain & R = {1,2,33 Range of R = \$6,7,83 A= l D = 60 = 17 019 $02 = 75^{\circ} = 50$ 1,-12 0,2,=0,22 $\frac{11}{3}$ $\frac{1}{3}$ $\frac{1}{12}$ $\frac{1}{12}$ $\frac{1}{2} = \frac{50}{12} = \frac{5}{2} \times 3 = \frac{5}{2}$ So, 2 = 5:4 016 AUX = BUX Take intersection with A on both side, ANAUX) = AN (BUX) (ANA) U (ANX) = (ANB) U (ANX) AUD = GAB)UD

A = AAB (Also, AUX = BUX Take intersepion with Bon both sides Bnaux)= BnBux) BNA) UBNX) = (BNB) UBNX)
BNAU &= BUA

019 a) Cot n= -5 so, tann=-12 1+ Cot 2n = Cose 2n 1+25 - Cosum 169 - Corun 7) Cosun = 4 169 149 = ± 13 12 In second quadrant, Corun = 13 So, Sinn = 12 $1 + \sin^2 n = \cos^2 n$ $1 - \frac{144}{169} = \cos^2 n$ D) Corn= + 725 J Corn = + 5 13 -7 Corn = -5 (in IInd

Tis quadrant) 1 cach Sun = -13 A = 21,23, B= {3,43 Ax B = $\{(1,3), (1,4), (2,3), (2,4)\}$ No of Subjects = $2^{1/2} = 2^{1/2} = 16$ Subjects are $\Rightarrow \{(1,3), (2,4)\}, \{(1,4)\}, \{(2,3)\}, \{(1,3), (2,3)\}, \{(1,3), (2,4)\}, \{(1,3), (2,4)\}, \{(2,2), (2,4)\}, \{(1,4), (2,4)\}, \{(2,2), ($

Set-B

1 a)
$$(-\infty,3)$$
2 b) $(6,8,9,10,11,12)$
3 a) 1
1 y a) $(-\infty,1)$
5) b) $(25-1)$
6 c) 15
7 c) $(-\infty,1)$
8 d) U
9 d) $(-\infty,1)$
10 c) $(-\infty,1)$
11 c) $(-\infty,1)$
11 c) $(-\infty,1)$
11 c) $(-\infty,1)$
12 Section—B

12 $(-\infty,1)$
13 Section—B

14 $(-\infty,1)$
15 Section—B

15 $(-\infty,1)$
16 $(-\infty,1)$
17 Section—B

18 $(-\infty,1)$
18 Section—B

19 $(-\infty,1)$
10 $(-\infty,1)$
10 $(-\infty,1)$
11 $(-\infty,1)$
11 $(-\infty,1)$
12 Section—B

12 $(-\infty,1)$
13 Section—B

14 $(-\infty,1)$
15 Section—B

16 $(-\infty,1)$
17 $(-\infty,1)$
18 Section—B

17 $(-\infty,1)$
19 $(-\infty,1)$
19 $(-\infty,1)$
10 $(-\infty,1)$
10 $(-\infty,1)$
11 $(-\infty,1)$
12 Section—B

11 $(-\infty,1)$
12 Section—B

12 $(-\infty,1)$
13 Section—B

14 $(-\infty,1)$
15 Section—B

16 $(-\infty,1)$
17 $(-\infty,1)$
18 Section—B

18 $(-\infty,1)$
19 $(-\infty,1)$
19 $(-\infty,1)$
19 $(-\infty,1)$
19 $(-\infty,1)$
10 $(-\infty,1)$
10 $(-\infty,1)$
10 $(-\infty,1)$
11 $(-\infty,1)$
11 $(-\infty,1)$
12 $(-\infty,1)$
13 Section—B

14 $(-\infty,1)$
15 Section—B

15 $(-\infty,1)$
16 $(-\infty,1)$
17 $(-\infty,1)$
18 Section—B

18 $(-\infty,1)$
19 $(-\infty,1)$
10 $(-\infty,1)$
10 $(-\infty,1)$
10 $(-\infty,1)$
11 $(-\infty,1)$
11 $(-\infty,1)$
11 $(-\infty,1)$
12 $(-\infty,1)$
12 $(-\infty,1)$
13 Section—B

14 $(-\infty,1)$
15 Section—B

15 $(-\infty,1)$
16 $(-\infty,1)$
17 $(-\infty,1)$
18 Section—B

18 $(-\infty,1)$
19 $(-\infty$

SINOLE CO Section-D faj= x2 1+x2 Df = Real No y= x2 1+x2 $\frac{y(1+n^{2}) = n^{2}}{x^{2}(1-y) = y}$ $\frac{y^{2} = y}{1-y}$ As x2 20 always A. 4 20 Case II y + [0,1) 4 1) Con= -3 N lies in Thed quadrat Con $n = \frac{-5}{5}$ Sea $n = \frac{5}{-5}$ $1 - (0)^2 n = \frac{3}{5} \cdot n^2 n$ $1 - \frac{1}{25} = \frac{14}{5} \cdot \frac{1}{5} \cdot \frac{1}{$ 5) Shin = - 4 as 2 lies in Wed

(osun = - 5, -) tenn= 5/-