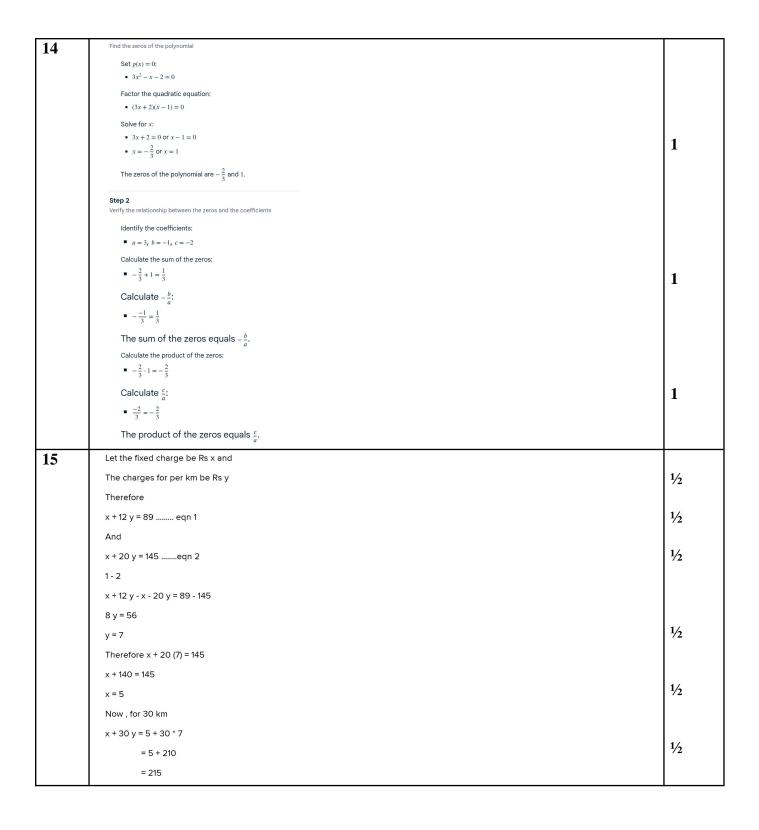


OSDAV Public School, Kaithal


Answer key (PT-1) (May,2025)

Class: xth

Subject : Maths(Set A)

Q.No.	Section-A	Marks
1	(d) more than 3	1
2	(c) Infinitely many solutions	1
3	(a) 24	1
4	(c) 20	1
5	(a) Intersects x-axis	1
	Section-B	
6	4x+y=3(1)	
	3x-2y=5(2)	
	By using substitution method-	
	From equ. (1) y=3-4x	1/2
	Put the value of y in equ. (2)	
	3x-2(3-4x) = 5	
	x=1	1
	Put x in equ. (1)	
	4(1) + y = 3	
	Y=-1	1/2
7	If 15 ⁿ end with digit zero,then the number should be divisible by 2 and 5.	1/2
	As 2×5=10	
	\rightarrow This means the prime factorization of 15 ⁿ should contain prime factors 2 and 5.	
	$\rightarrow 15^{\rm n} = (3 \times 5)^{\rm n}$	1/2
	It does not have the prime factor 2 but have 3 and 5,	
	Since 2 is not present in the prime factorization, Also the uniqunees of	1/2
	fundamental theorem of arithmetic suggests that there are no other primes in the	
	factorization of 15 ⁿ .	1/2
	So,15 ⁿ can not end with digit zero.	
8	$f(x)=kx^2+3x-2k$	
	Sum of zeroes=½(product of zeroes)	1/2
	$-3/k = \frac{1}{2}(-2k/k)$	1
	3/k=1 k=3	
		1/2
9	$Sum=3+(-\frac{1}{2})$	
	=5/2=-b/a	1/2
	Product=-3/2=c/a	1/2
	On comparing	
	a=2;b=-5;c=-3	1/2
10	$P(x) = 2x^2 - 5x - 3$	1/2
10	411=3×137	1/2
	321=3×107	1/2
	HCF=3	1/2
	Therefore 411 and 321 are not coprime	1/2
11	Section-C	
11	2X+Y=6; 2X-Y-2=0.	1,
	Solutions Table-1 Solutions Table-2	1/2
	Sulutulis Table-7	

	Plotting	1/2
	Unique solution=(2, 2)	11/2
		1/2
12	Assuming $5\sqrt{2}$ as a rational number.	
	Let $5\sqrt{2}=r$	1/2
	$\sqrt{2}$ =r/5	
	Therefore $\sqrt{2}$ as a rational number, i.e., can be written in the form a/b where a and	
	b are integers with no common factors other than 1 and b is not equal to zero.	
	$\sqrt{2/1} = a/b$	
	$\sqrt{2b} = a$	
	By squaring on both sides	
	$2b^2 = a^2$	
	$b^2 = a^2/2 \dots (1)$	
	It means that 2 divides a ² .	1
	It means that it also divides a	
	a = 2c	
	By squaring on both sides	
	$a^2 = 4c^2$	
	Substituting the value of a in equation (1)	1
	$\mathbf{b}^2 = 2\mathbf{c}^2$	
	$\mathbf{b}^2/2 = \mathbf{c}^2$	
	As a is divisible by 2, b is also divisible by 2	
	a and b have a common factor as 2	
	It contradicts the fact that a and b are coprime	
	This has arisen due to the incorrect assumption as $\sqrt{2}$ is a rational number.	
	Therefore, $\sqrt{2}$ is irrational.	
	So $5\sqrt{2}$ is also irrational.	1/2
13	$p(x) = 2x^2 - x + 3$	
	i) $1/a + 1/b = (a+b)/ab$	(1½)
	$=(\frac{1}{2})/(\frac{3}{2})=\frac{1}{3}$	
	ii) $a^2+b^2=(a+b)^2-2ab$	(1½)
	=-11/4	

OSDAV Public School, Kaithal

Answer key (PT-1) (May,2026)

Class: xth

Subject : Maths(Set B)

Q.No.	Section-A	Marks
1	(a) Unique solution	1
2	(d) At most n zeroes	1
3	C) Irrational number	1
4	(b) -6	1
5	C) 2×7 ²	1
	Section-B	
6	3x-2y=3(1)	
	2x+y=5(2)	
	By using substitution method-	1/2
	From equ. (2) $y=5-2x$	
	Put the value of y in equ. (1)	
	3x-2(5-2x) = 3	
	x=13/7	1
	Put x in equ. (2)	
	2(13/7) + y = 5	
	Y=9/7	1/2
7	If 12 ⁿ end with digit zero,then the number should be divisible by 2 and 5.	1/2
	As 2×5=10	
	\rightarrow This means the prime factorization of 15 ⁿ should contain prime factors 2 and 5.	
	$\rightarrow 12^{n} = (2^{2}x3)^{n}$	1/2
	It does not have the prime factor 5 but have 3 and 2,	
	Since 5 is not present in the prime factorization, Also the uniqunees of	1/2
	fundamental theorem of arithmetic suggests that there are no other primes in the	
	factorization of 12 ⁿ .	1/2
	So,12 ⁿ can not end with digit zero.	
8	$f(x)=2x^2-x+3k$	1.
	a+b=ab	1/2
	1/2=3k/2	1
	k=1/3	1/2
9	$48 = 2^4 \times 3$	1/2
	$72=2^3 \times 3^2$	1/2
10	LCM=144	1
10	Sum=3 - $\frac{1}{4}$ =11/4=-b/a Product=3(1/) = 3/4 = 0/2	1/2
	Product= $3(-\frac{1}{4}) = -\frac{3}{4} = \frac{c}{a}$	1/2
	a=4, b=-11, c=-3 4x ² -11x-3	1/ ₂ 1/ ₂
		72
11	Section-C	
11		1/2
		72
		1/2
		72

```
Let x be the numerator and y be the
                    Then, it is given that \frac{(x+1)}{(y+1)} = \frac{4}{5}, \frac{(x-5)}{(y-5)} = \frac{1}{2}
                                                                                                                                                                                  1/2
                     \Rightarrow 5x + 5 = 4y + 4
                     \Rightarrow 5x - 4y + 1 = 0 .... (1)
                     \frac{(x-5)}{(y-5)} = \frac{1}{2}
                     \Rightarrow 2x - 10 = y - 5
                     \Rightarrow 2x - y - 5 = 0 .... (2)
                                                                                                                                                                                  1/2
                     Multiplying (2) by 4,
                     we get
                     8x - 4y - 20 = 0 ...(3)
                                                                                                                                                                                  1/2
                     Subtracting (3) from (1),
                     we get -3x + 21 = 0
                                                                                                                                                                                  1/2
                    Putting x = 7 in (2),
                     we get
                     2 \times 7 - y - 5 = 0
                     \Rightarrow y = 9.
                     Therefore the fraction is 7
12
               p(x) = 4x^2 - x - 3
                      Rewrite the middle term using these numbers:
                     Factor by grouping: 4x(x-1) + 3(x-1).
                     Factor out the common term: (4x + 3)(x - 1).
                  Step 2
                  Find the zeros
                      Set each factor equal to zero and solve for x.
                       4x + 3 = 0 \implies x = -\frac{3}{4}.
                                                                                                                                                                                   1
                         x-1=0 \Longrightarrow x=1. 
                      The zeros are -\frac{3}{4} and 1.
                  Step 3
                  Verify the relationship between zeros and coefficients
                      Sum of zeros: -\frac{3}{4} + 1 = \frac{1}{4}.
                                                                                                                                                                                  1
                      Product of zeros: -\frac{3}{4} \times 1 = -\frac{3}{4}.
                      For the polynomial 4x^2 - x - 3, a = 4, b = -1, and
                      Sum of zeros should be -\frac{b}{a} = -\frac{-1}{4} = \frac{1}{4}.
                      Product of zeros should be \frac{c}{a} = \frac{-3}{4} = -\frac{3}{4}.
                                                                                                                                                                                  1
                      The relationships are verified.
13
               P(x)=3x^2-4x+3.
                a+b=4/3
                                                                                                                                                                                   1/2
               ab=3/4
                                                                                                                                                                                  1/2
               i) a^2b+b^2a=ab(a+b)
                                    =(3/3)(4/3)=4/3
                                                                                                                                                                                   1
               ii) a^2+b^2=(a+b)^2-2ab
                                 =-2/9
                                                                                                                                                                                   1
               Assuming 5\sqrt{3} as a rational number.
14
```

	Let $5\sqrt{3}=r$	1/2
	$\sqrt{3}$ =r/5	
	Therefore $\sqrt{3}$ is a rational number, i.e., can be written in the form a/b where a and	
	b are integers with no common factors other than 1 and b is not equal to zero.	
	$\sqrt{3/1} = a/b$	
	$\sqrt{3}\mathbf{b} = \mathbf{a}$	
	By squaring on both sides	
	$3b^2 = a^2$	
	$b^2 = a^2/3 \dots (1)$	
	It means that 3 divides a2.	1
	It means that it also divides a	
	Let a =3 c	
	By squaring on both sides	
	$\begin{vmatrix} a^2 = 9c^2 \end{vmatrix}$	
	Substituting the value of a2 in equation (1)	1
	$3b^2 = 9c^2$	
	$b^2 = 3c^2$	
	As b ² is divisible by 3, b is also divisible by 3	
	a and b have a common factor as 3	
	It contradicts the fact that a and b are coprime	
	This has arisen due to the incorrect assumption as $\sqrt{5}$ is a rational number.	
	Therefore, $\sqrt{5}$ is irrational.	
	So $5\sqrt{3}$ is also irrational	1/2
15	2X+Y=6; 2X-Y+2=0.	
	Solutions Table-1	1/2
	Solutions Table-2	1/2
	Plotting	11/2
	Unique solution=(1, 4)	1/2