Std XII

Subject:MATHEMATICS

WORKSHEET

CHAPTER-5[APPLICATION OF DERIVATIVES]

INCREASING& DECREASING:

1. The value(s)of x for which the function $y = x^4 - \frac{4x^3}{3}$ is increasing is

 $(a)(-1,\infty)$ $(b)(1,\infty)$ (c)(0,1) (d)(-1,0)

2. The nature of the function $y = \frac{4x^2+1}{x}$, $x \neq 0$ in the interval $\left(\frac{-1}{2}, 0\right)$

(a)increasing (b)strictly increasing

(c)decreasing (d)strictly decreasing

3. The interval in which the function $f(x) = x^3 - 6x^2 + 9x + 15$ is decreasing

(a)(-1,3) (b)(1,3) (c) $(-\infty,-1)$ (d) $(-\infty,3)$

4. Critical point for the function $f(x) = \frac{1}{4}x^4 - x^3 - 5x^2 + 24x + 12$, in the domain [0,3]

(a)3 (b)-3(c)2 (d)4

Find the intervals for the following function is increasing and decreasing

$$(i)f(x) = (x-1)(x-2)^2$$

(ii)
$$f(x) = 6 - 9x - x^2$$

(iii)
$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 21$$

ANSWERS

- 1. (b) (1,∞)
- 2. (d)strictly decreasing
- 3. (b)(1,3)
- 4. (c)2
- 5. $(i) \left(-\infty, \frac{4}{3}\right] \cup [2, \infty) \uparrow \text{ and } \left[\frac{4}{3}, 2\right] \downarrow (ii) \left(-\infty, \frac{-9}{2}\right) \uparrow \text{ and } \left(-\frac{9}{2}, \infty\right) \downarrow (iii) \left[1, 2\right] \cup \left[3, \infty\right) \uparrow$