

# **D.A.V. PUBLIC SCHOOL, NEW PANVEL**

Plot No. 267, 268, Sector-10, New Panvel,
Navi Mumbai-410206 (Maharashtra).
Phone 022-27451793, 27468211, Telefax- 27482276
Email- davschoolnp@vsnl.net / davnewpanvel@gmail.com, www.davnewpanvel.com

## SAMPLE PAPER UNIT I 2025-26

STD: - XII

Sub:- Physics Time:- 2 Hours
Date: - Marks: - 50

#### **General Instructions:**

- (1) All questions are compulsory. There are 25 questions in all.
- (2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
- (3) Section A contains thirteen questions, nine MCQ and four Assertion Reasoning based of 1 mark each, Section B contains four questions of two marks each, Section C contains five questions of three marks each, Section D contains one case study-based questions of four marks each and Section E Contains two long answer questions of five marks each.

|   | SECTION A                                                                                                                                       |                                                                                   |  |  |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| 1 | Four charges are arranged at the corners of a square ABCD, as shown in the adjoining figure. The force on the charge 5q kept at the centre O is |                                                                                   |  |  |  |  |
|   | -2q B+2q                                                                                                                                        |                                                                                   |  |  |  |  |
|   | (a) Zero<br>(c) Along the diagonal BD                                                                                                           | <ul><li>(b) Along the diagonal AC</li><li>(d) Perpendicular to side AB.</li></ul> |  |  |  |  |



| 8  | A wire of resistance R is cut into n equal parts. These parts are then connected in parallel. The equivalent resistance of the combination will be                                                                                                                                                                                                                                                                                                              |    |  |  |  |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
|    | (a) nR (b) R/n (c) n/R (d) R/n <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |  |  |  |  |  |
| 9  | Five equal resistances of each R are connected as shown in the figure. A battery of V volts is connected between A and B .The current flowing in AFCEB will be                                                                                                                                                                                                                                                                                                  |    |  |  |  |  |  |  |
|    | (a) 3V/R (b) V/R (c) V/2R (d) 2V/R                                                                                                                                                                                                                                                                                                                                                                                                                              |    |  |  |  |  |  |  |
|    | D R R R R R R R R R R R R R R R R R R R                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |  |  |  |
| 10 | For question numbers 10, 11, 12 and 13, two statements are given-one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.  a) Both A and R are true and R is the correct explanation of A  b) Both A and R are true but R is NOT the correct explanation of A  c) A is true but R is false d) A is false and R is also false e) A is false and R is true |    |  |  |  |  |  |  |
|    | Assertion: The potential difference between any two points in an electric field depends only on initial and final position.  Reason: Electric field is a conservative field so the work done per unit positive charge does not depend on path followed.                                                                                                                                                                                                         | 1M |  |  |  |  |  |  |
| 11 | Assertion: Polar molecules have permanent dipole moment. Reason: In polar molecules, the centres of positive and negative charges coincide even when there is no external field.                                                                                                                                                                                                                                                                                |    |  |  |  |  |  |  |
| 12 | Assertion(A): No work is done in moving a test charge from one point to another over an equipotential surface.  Reason(R): Electric field is always normal to the equipotential surface at every point.                                                                                                                                                                                                                                                         | 1M |  |  |  |  |  |  |
| 13 | Assertion(A): The potential inside a hollow spherical charged conductor is zero.  Reason(R): Inside the hollow spherical conductor electric field is constant.                                                                                                                                                                                                                                                                                                  | 1M |  |  |  |  |  |  |

|    | SECTION B                                                                                                                                                                                                                                          |       |  |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|--|
|    | All questions are compulsory. In case of internal choices, attempt anyone.                                                                                                                                                                         |       |  |  |  |  |  |  |  |
| 14 | A 10 V battery of negligible internal resistance is connected across a 200 V                                                                                                                                                                       |       |  |  |  |  |  |  |  |
|    | battery and a resistance of $38\Omega$ as shown in the figure. Find the value of the                                                                                                                                                               |       |  |  |  |  |  |  |  |
|    | current in circuit.                                                                                                                                                                                                                                |       |  |  |  |  |  |  |  |
|    | 10 V                                                                                                                                                                                                                                               |       |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                    |       |  |  |  |  |  |  |  |
|    | 38 Ω 200 V                                                                                                                                                                                                                                         |       |  |  |  |  |  |  |  |
| 15 | Find the effective capacitance.                                                                                                                                                                                                                    | 2 M   |  |  |  |  |  |  |  |
|    | $ \begin{array}{c c} A/2 & A/2 \\  \hline  & K_1 & K_2 \\  \hline  & K_2 & d/2 \end{array} $                                                                                                                                                       |       |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                    |       |  |  |  |  |  |  |  |
| 16 | Two-point charges +4 pC and +1 pC are separated by a distance of 2 m in                                                                                                                                                                            | 2 M   |  |  |  |  |  |  |  |
| '0 | air. Find the point on the line-joining charges at which the net electric field of                                                                                                                                                                 |       |  |  |  |  |  |  |  |
|    | the system is zero.                                                                                                                                                                                                                                |       |  |  |  |  |  |  |  |
| 17 | · ·                                                                                                                                                                                                                                                |       |  |  |  |  |  |  |  |
| '' | OR                                                                                                                                                                                                                                                 | 2 101 |  |  |  |  |  |  |  |
|    | A uniform magnetic field of magnitude 1.5 T is directed horizontally from                                                                                                                                                                          |       |  |  |  |  |  |  |  |
|    | west to east. (a) What is the magnetic force on a proton at the instant when it is moving vertically downward in the field with a speed of $4\times10^7$ m/s                                                                                       |       |  |  |  |  |  |  |  |
|    | is moving vertically downward in the field with a speed of 4×10 <sup>7</sup> m/s ? (b) Compare this force with the weight w of a proton.                                                                                                           |       |  |  |  |  |  |  |  |
|    | SECTION C                                                                                                                                                                                                                                          |       |  |  |  |  |  |  |  |
|    | All questions are compulsory. In case of internal choices, attempt any one                                                                                                                                                                         |       |  |  |  |  |  |  |  |
| 18 | A cylindrical conductor of radius 'R 'carries a current 'i'. The value of magnetic field at a point which is R/4 distance inside from the surface is 10T. Find the value of magnetic field at point which is 4R distance outside from the surface. | 3 M   |  |  |  |  |  |  |  |
|    | OR  Derive an expression for the magnetic field inside, outside and on the cylindrical conductor carrying current i of radius R.                                                                                                                   |       |  |  |  |  |  |  |  |

What is drift velocity? Derive expression for drift velocity of electrons in a good conductor in terms of relaxation time of electrons?

### OR

In the circuits shown in the figures, the galvanometer shows no deflection in each case. Find the ratio of  $R_1$  to  $R_2$ .





20 Find the current in each branch.

3 M

3 M



OR

Find the equivalent resistance across A and B.





|    | SECTION E                                                                                                                                                                                                                                                   |     |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
|    | All questions are compulsory. In case of internal choices, attempt anyone.                                                                                                                                                                                  |     |  |  |  |  |  |  |  |
| 24 |                                                                                                                                                                                                                                                             | 5 M |  |  |  |  |  |  |  |
|    | (a)Two-point charges, $q_1 = 10 \times 10^{-8}$ C, $q_2 = -2 \times 10^{-8}$ C are separated by 60 cm in air.                                                                                                                                               |     |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                             |     |  |  |  |  |  |  |  |
|    | (i) Find at what distance from the 1 <sup>st</sup> charge, q <sub>1</sub> would the electric potential                                                                                                                                                      |     |  |  |  |  |  |  |  |
|    | be zero.                                                                                                                                                                                                                                                    |     |  |  |  |  |  |  |  |
|    | (ii) Also calculate the electrostatic potential energy of the system.                                                                                                                                                                                       |     |  |  |  |  |  |  |  |
|    | (b) Find the value of electric field and potential at point of intersection of two                                                                                                                                                                          |     |  |  |  |  |  |  |  |
|    | diagonals of a square of side 'a' in figure (i) and (ii).                                                                                                                                                                                                   |     |  |  |  |  |  |  |  |
|    | -Q -Q +Q D C D C A B +Q (i) +Q (ii) -Q                                                                                                                                                                                                                      |     |  |  |  |  |  |  |  |
|    | OR                                                                                                                                                                                                                                                          |     |  |  |  |  |  |  |  |
|    | (a) An infinite line charge produces a field of 9 x10 <sup>4</sup> NC <sup>-1</sup> at a distance of                                                                                                                                                        |     |  |  |  |  |  |  |  |
|    | 2 cm. Calculate the linear charge density.                                                                                                                                                                                                                  |     |  |  |  |  |  |  |  |
|    | (b) Derive an expression for an electric field at a point in the equatorial                                                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    | plane of an electric dipole of dipole moment p .                                                                                                                                                                                                            |     |  |  |  |  |  |  |  |
| 25 | <ul> <li>(a) Two cells of emfs 1.5 V and 2.0 V having internal resistance 0.2 Ω and 0.3 Ω respectively are connected in parallel. Calculate the emf and internal resistance of the equivalent cell.</li> <li>(b) Compare resistances of A and B.</li> </ul> | 5 M |  |  |  |  |  |  |  |
|    | (c)State an expression between resistivity of the material of a conductor and relaxation time of electrons.                                                                                                                                                 |     |  |  |  |  |  |  |  |
|    | OR                                                                                                                                                                                                                                                          |     |  |  |  |  |  |  |  |
|    | (a) Find the equivalent resistance between points 1 and 8 with respect to                                                                                                                                                                                   |     |  |  |  |  |  |  |  |

the figure.



- (b) If the temperature of a conductor decreases ,find the change in the relaxation time of electrons.
- (c) A current I flow in a wire of circular cross-section with the free electrons travelling with a drift velocity v. Find the drift velocity of electrons when a current 2I flows in another wire of twice radius and of the same material.

### Blue Print of this sample paper

| Sr.<br>No. | CHAPTERS                                               | 1 Mark    | 4 Marks<br>CASE<br>STUDY | 2 Marks   | 3 Marks   | 5 Marks  | Total |
|------------|--------------------------------------------------------|-----------|--------------------------|-----------|-----------|----------|-------|
| 1          | Electric Charges and Fields                            | 1 x 3 = 3 | -                        | 2 x 1 = 2 | -         | 5 x 1= 5 | 10    |
| 2          | Electrostatic Potential and Capacitance                | 1 x 6 = 6 | 4 x 1 = 4                | -         | -         | -        | 10    |
| 3          | Current Electricity                                    | 1 x 4 = 4 | -                        | 2 X 2 = 4 | 3 X 2 = 6 | 5 x 1= 5 | 19    |
| 4          | Moving Charges and magnetic effects of electri current | -         | -                        | 2 x 1 = 2 | 3 X 3 =9  | -        | 11    |
|            | Total                                                  | 13        | 4                        | 8         | 15        | 10       | 50    |

| Sr.No. | Typology of | VSA    | CASE  | SA      | LA I    | LA II   | MARKS | Percentage |  |
|--------|-------------|--------|-------|---------|---------|---------|-------|------------|--|
|        | Questions   | 1 mark | STUDY | 2 marks | 3 marks | 5 marks |       |            |  |